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We show that the number of linearly independent components of a tensor in #2 dimensions with specified
symmetry properties is given by a polynomial in . This polynomial can be determined in a simple way
from the Young diagram associated with the tensor.

1. INTRODUCTION

There are two approaches to classifying the irre-
ducible representations of the linear groups GL, and
SU, . First, one can consider a fixed #, i.e., a space of
fixed dimension, and label each representation by a
set of (n — 1) parameters which run independently
from 1 (or 0) to infinity. A standard formula due to
Weyl is then available [cf. Eq. (3) below] for computing
the dimensionality of the representation. [For SU,
this is the familiar pg(p + ¢)/2 or (A, + 1)(4; + 1) X
(A4 + 4, + 2)/2.] This approach is best understood
from the point of view of the Cartan-Stiefel diagram,!
the parameters appearing as coordinates of a lattice
point in an (» — 1)-dimensional space.

Alternatively, the irreducible representations can
be built up from the fundamental n-dimensional
representation by forming tensors and carrying out
the well-known symmetrization and antisymmetriza-
tion process on the indices. From this point of view,
the representation is described by a Young diagram;
this diagram characterizes one irreducible representa-
tion of every GL, (or SU,), provided » is at least as
large as the number of rows in the diagram.

This suggests the following problem: For a given
Young diagram, what is the number of linearly
independent components of a tensor belonging to that
diagram, as a function of n?

For example, a symmetric tensor with two indices
has n(n + 1)/2 components; the fully-covariant
Riemann curvature tensor has #%(n* — 1)/12 compo-
nents; etc. Note that such a formula refers to tensors
transforming under different groups.

The purpose of this paper is to show that these
formulas can be read off from the Young diagram in a
simple way. In Sec. 11 we state the rule; Secs. 111 and
1V contain the proof.

It appears that these results are at least partially
known, but we know of no published proof.
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II. STATEMENT OF THE RESULT

Consider a Young diagram consisting of N blocks
arranged in r rows. Let P(n) be the dimensionality of
the associated irreducible representation of GL, or
SU,. Equivalently, P(n) is the number of linearly
independent tensors with N indices (each index
running from 1 to #) having the symmetry properties
specified by the Young diagram. (When n < r, the
tensor must vanish identically and we define P(n) = 0.
In this case, there is no associated representation of
the transformation group.)

Our result is as follows: P(n) is a polynomial in #,
all of its roots are integers, and the multiplicities of
the roots are given by the lengths of the diagonals of
the Young diagram.

Specifically, the number of blocks on the main
diagonal gives the multiplicity of zero as a root; the
number of blocks on the mth diagonal below (above)
the main diagonal gives the multiplicity of +m (—m)
as a root.

Thus, for the example shown in Fig. 1, we have

P(n) = c(n — 2)(n — 1)2n2(n + 1)¥(n + 2)
X (n + 3)(n + 4)
= cn*(n? — 1)2(n® — 4)(n + 3)(n + 4).

The leading coefficient ¢ can be determined by com-
paring this formula with the dimensionality for the
lowest GL, compatible with the diagram, i.e., for
n =r. In this example, the diagram yields a repre-
sentation of GL, of dimension 15, so we havec - 1-22-
32-42-5-6-7=15,0orc=1/(27-32-7).

However, the constant ¢ can also be read off from
the Young diagram in a reasonably simple way. We
shall show that ¢ = d/N! , where N is the total number
of blocks in the diagram and d is the dimensionality
of the associated representation of the symmetric
group Sy-. The algorithm for calculating d from the
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diagram is well known.? A less profound but com-
putationally simpler prescription for ¢ will be obtained
in the course of the proof [see Eq. (12) below].

III. PROOF OF THE DIAGONAL RULE FOR
THE ROOTS

As before, we consider a Young diagram with r
rows and N blocks. We also define

= the length of the ith row (u; = 0 for i > r),

A = p; — P> (D

pi=4t+ L

Note that the definition of a Young diagram requires
A; > 0, so that the p, are positive integers. Clearly, we
have

2
r @)
1g1

Our procedure will consist of beginning with the
usual Weyl formula for the dimensionality of a rep-
resentation of GL, (or SU,) and recasting it in such
a way as to exhibit its polynomial nature as a func-
tion of n. The Weyl formula® (for n > r) is

+ w2 T Dne
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n—1
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= 3
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The n-dependence of this expression is obscured by the
presence of n in the upper limits of the product
symbols. We therefore proceed by removing these
appearances of n. As a first step, we note that the
- quantity in brackets is equal to 1 whenever i > r.
Thus, for n > r, the upper limit (n — 1) of the first

product symbol can be replaced by r, and we have

Hlkﬁ( +1121p,)

n—1 k
=M (=50 3n)
(n - l)‘ k=1 j=t
Although we have justified this step only for n > r,
it is easily seen that the result is also valid for n = r,
prowded that an “empty product” such as JT]522 (
is interpreted as unity. We shail make this mterpreta—
tion throughout the remainder of the proof.

To proceed further with the simplification of the
n dependence, we use the identity

P(n) =

(4)

k k
Z.p,-=z(1+l)—k—l+1+zl,

j=t j=1

=k—i+l4p- )

and we split the product within the brackets into two
parts:

Hi+1

P(n) = H':(n_l_ )‘(;ﬁ(k"‘+l+ﬂz :“k+1))
-(:Ij(k—i+1+/t,-—pck+1))]. ©)

Now the quantity within the first large parentheses is
independent of n, while in the second large parentheses
we have y,.., = 0 (since £ + 1 > r). Thus,

n—1
y(k"i'f‘l'l'ﬂt_#kﬂ)
1 .
n . (n—i+4 u)!
= k—i+1+upu)="——"———, (1
I ( = @
and we finally obtain
T 1 r—1
Py = (T oy T e 1 1 = )
i= 1(7"—1+‘u,)‘k-—z
r (n—i )N
X (H(n l-l-.lu’l)'). (8)
i (n— i)

We have now achieved our goal: The dependence of
P(n) on n has been completely removed from the limits
of the product symbols. In fact, the expression in the
first large parentheses in this result is independent of n,
while the expression in the second large parentheses
is clearly a polynomial in # with leading coefficient
1. Moreover, the roots of this polynomial agree
with the rule stated in Sec. II. In particular, the first
row of the Young diagram contributes a factor n
(n+ 1)*-- (n + w, — 1), the second row contributes
(n—Dn--- @+ p, — 2), etc., and this corresponds
exactly to the “diagonal rule” for the roots of P(n).
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IV. PROOF OF THE FORMULA FOR THE
LEADING COEFFICIENT
We now turn our attention to the computation of
the leading coefficient of the polynomial, which is
given in the first large parentheses of Eq. (8):

T 1 r—1
= —_— k — 1 : .
¢ H((r—t+,u,)'g( i+ 1+ u :“k+1))
) . )
It is convenient to define
aG=r—it+u, 1<iLr (10)
Then we have
7 1 r—1
=TT (-5 I (@ = av.0) an
or "
= (11 ,)(H(al ) (12)
=1 d; i,j=1

This equation provides an easy method for computing
c. The a’s can be read from the Young diagram, since
a; is equal to the number of blocks in the ith row plus
the number of blocks in the first column lying below
the ith row. The coefficient ¢ is then given by a fraction
whose numerator is the product of the positive differ-
ences of the a’s taken in pairs, and whose denominator
is the product of the factorials of the a’s.

We shall now prove that ¢ = d/N!. Each Young
diagram with N blocks is associated with an irreducible
representation of the symmetric group Sy; d is the
dimensionality of that representation. The following
rule is well known* and clearly determines 4 uniquely:
The diagram with N = 1 has d = 1; the value of d
for any other diagram equals the sum of the d’s
associated with all subdiagrams obtained by removing
one block.

We begin by summing the ¢’s of all subdiagrams
with one block less. An acceptable subdiagram is
obtained by removing the last block of (say) the ith
row, provided this row is longer than the (i 4+ 1)th
row—i.e., provided @, — @,.; > 1. Then the effect of
removing the block is to replace a; by (¢, — 1),
leaving all other a’s unchanged.> A block cannot be
removed from the ith row when it has the same length
as the succeeding row (i.e., when a; = a,,; = 1), but
in this case the replacement of a; by (¢; — 1) leads to a
set of @’s giving ¢ = 0 when substituted into Eq. (12);
thus no error arises from including these terms in the
sum,

If ¢, denotes the value of the rhs of Eq. (12) with a;
reduced by 1, then we have

(13)

so that

r r 1
Zcz-=z(ain(1+ )) (14)
i i=1 §=1 aj - a;

In an appendix we prove the identity

Sfefyf+ 1)) -5

i1 a; — a; 2 i=1
“ (15)

which holds for any set of distinct numbers {a,}. But
we sce that the total number of blocks in the diagram
is given by

N=3m=2(@—r+i= _u+zai-
i=1 i=1 2 i=1
(16)
Combining Eqs. (14)-(16), we find
2. ¢;=Nc 17

which can be written
(18)

Moreover, a diagram with just one block has N!¢ =
1. Thus, N! ¢ satisfies the same recursion as d, so we
must have ¢ = d/N'!, completing the proof.

S(N—1)!c¢;=Nlec.
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APPENDIX
We now give the proof of Eq. (I5).

Theorem: If a,, - -
then

(o1

Proof: The identity may be rewritten as

, a, are any distinct numbers,

( ajian‘))=_r(r_l)+zat

i=1

é[ai(_l +g(l +aiiai))jl - —r(;;ﬁ'

Consider the lhs of this equation as a function of
the complex variable a,, with a;,--a,_; as fixed
parameters. This is a rational function of a,, with (at
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most) simple poles at a,, - * - @,_;. By examining the
expression, it is easily seen that the residue at each
“pole” vanishes. Moreover, as @, — oo, the expression
approaches the limit

e s 3[af-1+ 5 (14 )]
=1 i:lz a; — a;

Being a bounded entire function, the expression must
be independent of @,. The result then follows by
induction on r.

We mention an interesting related identity:

> H(1+ 1 )=r,
l=1;:ll a,-—ala

JOURNAL OF MATHEMATICAL PHYSICS

which can be proved by a similar method, or else can
be obtained as a corollary of the previous identity by
evaluating the change when all the a’s are incremented
by equal amounts.

* Mailing address: Centre de Physique Nucléaire, Parc d’Aren-
berg, 3030 Heverlee, Belgium.

1J.-P. Antoine and D. Speiser, J. Math. Phys. 5, 1226 (1964);
5, 1560 (1964).

% M. Hamermesh, Group Theory and its Application to Physical
Problems (Addison-Wesley, Reading, Mass., 1962), p. 198.

3H. Weyl, Selecta (Birkhiuser Verlag, Basel-Stuttgart, 1956),
p. 262fF.

4 This rule is related to the Frobenius construction of the repre-
sentations of Sy; it is clearly equivalent to the combinatorial rule
given by Hamermesh in Ref. 2.

8 A slight complication arises in case the last row has only one
block. Its removal then leads to an (r — 1)-rowed diagram with a’s

given by (a1 — 1, -+ - a,_1 — 1). The simplest procedure is to treat
this as an r-rowed diagram with an empty last row, having a’s
given by (a1, - + * @,—1, 0). Then the discussion in the text applies.
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A class of perturbation theories of ordinary differential equations is studied in a systematic and
rigorous way. This class contains the perturbation theory by Kruskal [J. Math. Phys. 3, 806 (1962)]
and its generalization discussed by Coffey [J. Math. Phys, 10, 426 (1969)] as well as the formal
aspects of the perturbation theory for quasiperiodic solutions by Moser [Math. Ann. 169, 136 (1967)].
It is shown that the systematic generalization of some algebraic ideas by Sternberg [J. Math. Mech.
10, 451 (1961)] and Moser provides a framework in which many structures of these perturbation
theories become more transparent. Especially, two questions raised by Coffey are answered. Finally, we
touch upon the question of convergence of the formal expansions.

1. INTRODUCTION

In his paper, which shows how to generalize
Bogoliubov’s perturbation theory of ordinary differ-
ential equations in the case of systems with all the
solutions nearly periodic, Kruskal® uses Bogoliubov’s?
averaging method to construct a new system which no
longer contains the “angle variable.” By solving this
new system he is able to construct a solution of the
perturbed system which avoids “secular” terms.

This procedure can be described also in terms of
formally equivalent systems. Instead of directly
aiming at the construction of the perturbed solution,
one first constructs a formally equivalent system which
if truncated at some finite power of e can be solved
directly. This solution then is plugged into the formal
transformation of coordinates to give the approximate
solution.

Introducing an equivalence relation between formal
vectorfields (i.e., formal power series in ¢ of analytic
vectorfields) over some open set of R”, we are able to
generalize his idea. Especially, we are concerned
with a generalization recently discussed by Coffey.?
Coffey asks essentially two questions: (1) Can degener-
ate perturbation theory be made canonical to all
orders? (2) How can it be understood that Coffey’s
approximation of a certain solution of a certain
exactly solvable system of differential equations is
asymptotic to the exact solution for all times, whereas
usually such an approximation is only asymptotic for
a time interval of length L/e? We clarify both points
by first giving exact conditions under which the first
question can be answered affirmatively and secondly
proving a theorem [Theorem 2] about the approxima-
tion of asymptotically stable solutions which when
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applied to Coffey’s system gives an answer to Coffey’s
second question. By exploiting and generalizing some
algebraic ideas of Moser* and Sternberg,5 the algebra
of the proofs becomes extremely simple, so that we
can concentrate on a rigorous treatment of the analytic
aspects of the proofs.

Finally, we touch upon the question of the con-
vergence of the formal expansions and show that this
question is strongly related to some research going
on in the foundations of classical mechanics initiated
by Kolmogorov.® We intend to dedicate a future
paper to the implications of those works for the
question of convergence of Kruskal’s perturbation
expansions.

2. BASIC DEFINITIONS AND PREPARATIONS

Let R™ be the set of real m-tuples z = (z,, - -, z,,)
equipped with the distance

|z — zol = max |z, — z,,l,
v=1,2,"*,m

D some connected set of R™, and the domains

D, ={z|zeC™ inf|Re(z — z))| < «, |Im z| < «},
20€ D

« > 0, a system of open neighborhoods of D, con-

sidered as a subset of C™ (set of complex m-tuples).
Cy(D) (w stands for analytic, b for bounded) shall

denote the ring (with respect to obvious addition and

multiplication) of all real-valued functions over D

with the following two properties.

(i) They are restrictions to D of functions which are
defined and analytic in some domain D;. Here 6 is a
positive number which may depend on f. If we want to
show this dependence explicitly, we write 8(f) instead
of simply 6.

(i)

|f1k = sup If(2I
exists for 0 < « < 4. )

(2.1)

Example: Let
D = {(z1, )| |zal < ¢} = R
The function
f(z1,2) = (24 — a*) ' cos 74

belongs to CP(D) foreach ¢ < a,and (f) = a — c.
It is clear that fe C2(D) implies f€ Co(D), where D
is any connected set contained in D.

Notice that, in case D is bounded, (i) implies (ii).
However, this is not the case, in general, as the reader

can check by replacing cos z, in the example above
by z;.

Let f, .., be the derivative of f with respect to
7y, ", Z,. It also belongs to C2(D) if f does. Indeed,
a simple application of Cauchy’s integral formula
yields

fule 200 = 1) 1f],. 22)

We will also make use of the following ring. of
power series in e:

F(D) = ring of formal power series in € over C2(D).

We use the notation

o0

f(z,€) = Eof “(z)e.
If fe®(@®), the function f(z) is called the nth
coefficient of f, and by definition it belongs to C2(D).
By $(D) we denote the subring of convergent
power series or, more exactly, we have fe $(D)if and
only if there exist constants ¢ and K(x) such that
f(z, €) is real in D for real €, holomorphic in

{(z,¢) I 2€DG0<e<[K(WO0< <8}, (23)

and uniformly bounded on ®, for fixed ¢. (In order
not to overload the text with absolute signs, we do not
distinguish between ¢ as a complex number and its
modulus. It is always clear from the context what
stands for. If the reader does not like this slightly
abusive notation, there is no harm in assuming that e
is always a real nonnegative number.)

4 and K(«) may again depend on f € (D). To show
this dependence, we shall occasionally write §( ) and
K(x, f) [or shorter K(f)], and we shall call § and X the
characteristic constants of f.

To avoid the introduction of a new constant, namely
the bound of fon D, , we may always choose K(x) in
(2.3) in such a way that

[/ < K(x).

This choice implies, according to Cauchy’s estimate,

L/ < K@) (2.4)
for 0 < k¥ < 6. Hence, we have
K(x)
1f(z, 9l < T kd @ (2.5)

on the set (2.3). Observe that K(k) is a nondecreasing
function of «.

It is easy to see that if f is a formal power series
whose coefficients satisfy (2.4) and

8 = inf 8(f™) > 0,

(n}
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then actually fe H(D) with characteristic constants
d and K{(«). To show that $(D) has really the structure
of a ring with respect to the usual addition and multi-
plication of functions is also trivial and therefore left
to the skeptical reader. We also check that if £ .
stands for the power series obtained from f € $(D) by
differentiating f with respect to z, , - - -, z, , then

Sviy, €H(D).

Indeed the corresponding 9 is easily seen to be 6(f).
Now let z€ D, [0 < « < 4(f)). Draw in the z, plane
a circle of radius (6 — «) around z, and apply
Cauchy’s integral representation. Then one recognizes
that

[£500,(2] < [KP()]™,

where
2 »
KP(x) = (3——) K(x), for n+1<p,
— K,
(2.6)
= ZK(K), for n+4+12>p.
0 — K

Remark: It is not difficult to see that all polynomials
in e with coefficients in C?(D) belong to $(D). If
f e F(D), we define

N

f[x\'] = f(n)en,

n=0
i.e., fIN stands for the power series f truncated at the
(N + Dth coefficient. Clearly, fT¥ e (D), even if

FEHD).
Now we introduce the set of g-tuples over F(D):

F D) ={f|f= fis for " S /L € FD.

If f € F (D) we refer to f, as the »th component of f.
/™ again denotes the nth coefficient of f and is now a
g-tuple of members of C(D). Clearly, (D) can be
looked upon as a module over F(D). Similarly,
9,(D), i.e., the set of g-tuples over H(D) can be con-
sidered as a module over $H(D). By definition, we have
Fu(D) = F(D) and H,(D) = H(D). Of special signifi-
cance is the case ¢ = m.

The characteristic constants of f € $,(D) are defined
by

5(f) = min &(,)

v=1,"",q
and
K(f) = max K(f,),
v, g
respectively.

For later reference we present the following trivial
result in form of a lemma.

Lemma 1: Let fe $,(D) and fI¥1 =0 for some
N=—-1,0,1,2,-+- (we define I = f-0 = (),
Let 6 and K(«) be the characteristic constants of f;
then | f(z, €)| is majorized on the set (2.3) by

[K(x)e] Y K(x)
1 —eK(x) ~ 1 —eK()

K(x)

Let e be the trivial function

e(z, €)=z

2.7
Clearly,

e € 9H,(D) if and only if D is bounded.

In any case, we define

Fn(D) ={f|f=e+ ¢, f€F, (D)

and similarly

In(D) ={f|[f=e+ f, /€9, (D)}

IffeF,(D)and g = e + g, g € §,,(D), we define
a composition f o g which also belongs to §,(D) by

(foRE@I=3 5 3 Sontn 8y 08)

where f, ., was defined above. This composition is
the natural extension of the usual composition of ana-
lytic functions to formal power series (see Lemma 2).
We recognize from the definition (2.8) that the sum
on the right side for each coefficient (fog)"™ is
actually finite. We obtain, forn =0,1,2, -+,

(f" g)(O) — f(o)’
(foR) =12 + 310,

(oo =r®+ 3w + 1) @2
v=1
+1 3 flge.

v,u=1

Lemma 2: (i) (f-g)"™ only contains coefficients
g™ withp < n — 1. (ii) If f€ §,(D), g € H,.(D)
le.,g=e+ g g€H.(D)
then f - g also belongs to H,(D).

Proof: (i) is an immediate consequence of the
definition of fog. Under the condition (ii), f and g
stand for at most 2m holomorphic functions where
(2, €) varies in a domain of the kind (2.3), and there-
fore (2.8) coincides with the usual composition

f(&(z, €, &) = f(z + €g(z. €), ¢

wherever the latter is defined.

(2.10)
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To prove (ii), it is therefore sufficient to show that
there exist positive constants 6 and K(x) such that
(2.10) is holomorphic in a domain of the kind (2.3)
and is majorized in each D,, 0 < < 4, by

K(x)[[1 — eK(x)].

Let 6, be the minimum of all ’s and K, («x) the maxi-
mum of all K’s over the set of components of fand g
and put

0 =46;, K(x) = max {[p()] %, K,(2x)},
where p(«) is defined to be a real positive number
such that for z € D, and € < p(x) we have

K (k)
leg(z, )] < T k(o

Then it follows for ze D, , € < 1/K(kx), 0 < k < 0,
that

< K

g(z, €) € Dy © ;.

Thus (f - g)(z, €) is holomorphic in each D, 0 <
x < 0, and majorized by

K(1)f[1 — eK(x)].
The lemma is proved.

Remark: Because the composition (2.8) coincides
with the usual composition under the assumption (ii)
of Lemma 2, it is customary to use the notation (2.10)
instead of (f - g)(z, €) even if fand g are only formal
power series.

$5,(D) and §,,(D) have an important algebraic
structure which is revealed in the following lemma.

Lemma 3: 9,,(D) and §,,(D) are groups with unit
element e with respect to the composition

fog=2g+ e(fog).
Here
f=e+e¢ and g=e+ ¢z, f,2€9,.D).

Proof: The fact that $,,(D) is a semigroup is a
corollary of the statement (ii) in Lemma 2. If f,
g € 9,,(D), the composition o coincides with the usnal
composition of holomorphic functions which is
known to be associative. Associativity being a purely
algebraic property, it extends from §,,(D) to &,.(D).
It follows that also §&,,(D) is a semigroup. (The fact
that e plays the role of the unit element is trivial.) We
shall prove now the existence of an inverse. This is
simple for §,,(D). It follows from the fact that the
equation

gz, &)+ f(z+ g, &) =0,

ie.,

g+ (fom) =0,

allows a recursive determination of the coefficients due
to the statement (i) of Lemma 2. Because the calcula-
tion of (f o g)™ involves only finitely many differentia-
tions and ring operations, the reader easily constructs
an inductive proof of the fact that g™ e C¢(D).

To show that f = e 4 ¢f has an inverse in $,,(D),
let 6 and K(x) be the characteristic constants of f,
and define

K 1

14+ « K(2x)

plx) =
The function spaces

A, = {g| g = analytic in the set
D, X [e < p(x)] and continuous on its closure}

equipped with the supnorm, which we denote by
lgll, , are Banach spaces. The ball B, of radius «/p(x)
is a compact and convex set of each space U, with

0< « <«
Therefore, if we can prove that the map T defined by
Tg=—fo(e+<g)

maps B, into itself (for some « > 0), T; will have
a fixed point in each space ¥,., 0 < «’ < «, by
Schauder’s fixed point principle,” and the function

8x =€+ €g,

corresponding to the fixed point g, will represent the
inverse of f in §,,(D). The coefficients of g, are the
same as those obtained for g in the recursion pro-
cedure described above because the latter is unique.

It remains to show that B, is mapped into itself
by T;. Let « be any real number with the property
0 < k< 40; g€ B, implies | g, < «/p(x). Hence

. legl < .
ie.,

8(z, €) €Dy, < D
for

ze®,, €< p(x).

Hence, according to (2.5) (or Lemma 1), we have

K(2x) =
Tl < T oK — o)
ITell. < T p(K)K(Q2K)  plx)

The lemma is proved.

Remark: In the sequel we denote the inverse of f in
Fn(D) [or 9,,(D)] by £, and correspondingly its
components by f_,,,» =1,2,---,m.
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We still have not revealed all the algebraic structure
of F..(D). We are led to a structure of a different kind
if we interpret the members of &, (D) geometrically.
Obviously they may be considered as formal “vector
fields” over some neighborhood of D, whereas, if
fS€9Hu(D), f can be interpreted as a I-parameter
family of analytic vector fields.

It is natural to associate with f& §,,(D) and ge
T.(D) another member of F,(D), namely

(fFg) e & (D)
defined by

(FF =3 fir-

It can be interpreted as the derivative of g in the
direction f. (The symbol F was taken from Ref. 8,
where it is used in a similar but more general context.)
Finally, we may define

f.8l=ftg—gtf [fged&.(D), (211)

and in this way we imprint on §,,(D) the new structure
of a Lie algebra.

Now we are in the position to define a useful
partition of §,,(D) into equivalence classes. Let f, g €
T (D). We write

f~ g mod §,(D), (2.12)
if there exists
We g.(D)
such that
frW=goW

To see that this is an equivalence relation and at the
same time to get some idea about its usefulness,
consider the two formal differential equations
i={f(z,¢),
(=gl 9
and assume that they are transformed into each other
by a transformation

z=W( e
with the inverse
{ =W,z e
One easily checks that this implies
g i‘ W = fo W,

fFW_l =g°W_1, (2.13)

i.e., formulas which show the symmetry of the relation
(2.12). The transitivity of the relation can be shown in
a similar way, and the reflexivity is trivial.

By a g-fold formal integral or asymptotic invariant
of the system

2=f(z,¢), f€F.D),

we medn any member J € (D) such that
J=ftS=0 (2.14)

and rank (J, ).y =9
In any case, we have
FEINY = (f — fINY) | JIND 4 £IN} JIN)
— D(€N+l) + (f[N] |_J[N])[N]
= [f|.J][N] + D(ENH).
Hence (2.14) implies

FHIPT = DN,

i.e., a g-fold formal integral defines ¢ (hierarchies of)
asymptotic invariants. For the notion of an asymp-
totic invariant, see Refs. 3, 9, and 10.

Lemma 4: The system of differential equations

Z=f(z,¢),
where
feFu(®) and f¥ =0, v=12",4
has a g-fold formal integral if and only if
S~ gmod §,(D),
where the first ¢ components of g vanish.

Proof: Let J € F (D) be a g-fold formal integral.
Because f{ = 0, it is no loss of generality to assume
JO =e forv=1,-,q.

Hence there exists V € §,,(D) such that Ve §,,(D)
defined by

Vv=va 1’=1,2,"',q,
=ev, =q+1,-..’m
has a representation
V=e+ €V
We define
g = (ff'V) °oV_4
Hence,

= (fFV,)oV_, vanishes forv = 1,2,-- - q.

The inverse statement is an immediate consequence of
the second equation of (2.13) which shows

vy=1,2,++,q, impliesftW_,, =
y=12--,4

& =0,
This proves the lemma.

Closely related to the notion of an asymptotic
integral is the notion of an asymptotic surface. Such
a surface (or,better,hierarchy of surfaces in analogy
to the hierarchy of asymptotic invariants) may be
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constructed if the unperturbed system has an in-
variant surface. To discuss this notion in some detail,
assume now that D is a closed domain of R™. Let
a =(a, " ,a,) be some constant vector of R%. We
define

DO = (z]zeDizn =ar, .z =4

Assume that a is chosen in such a way that D@
contains at least one interior point of ®. Then D@
represents an (m — g)-dimensional submanifold which
is homeomorphic to a closed domain of R"~.

Now let C¢*(®) be the subring of functions of
C¢(D) which vanish on D@,

Assume that 4 is an m-tuple of members of C(D)
such that

A, €Co¥D), v=1,2,""",q.

Then the system of differential equations
z= A(2)

has an (m — g)-dimensional invariant submanifold
D@, [Actually, by definition of C*(D) this manifold
has an extension to D\, 6 = 6(4).]

This means that any integral curve having a point
in common with D lies completely in D (for all
values of ¢ for which it exists).

Let F“ (D) be the ring of formal power series over
C¢%(D) and consider the perturbed system

i=f(z,¢), fO =4,

where f € §,,(D) [in practical applications we usually
even have fe€ 9,,(D)].

We will say that the system has an asymptotic
invariant surface if and only if

f ~ g mod §,(D),

g, € (D),

The importance of this notion can be seen in the
following way. Let { y,(, €) be a solution of

{=g"%¢ e
which stays in D*. The corresponding function
Z(N)(ts €) =>v”]["\7](§(1\’)(f, €), €

stays in the analytic submanifold

where
v=1,2,"+,q.

DN = {z| z = WIN(Z, ¢); { e D).

Now by assumption we have for all { € D
(ftW_) e W =0,

Hence we have on D@

SEWIE 9 = O, v=1,2,,;

—1lv

y=1,2,-",q.

the functions WXz, €), if restricted to the sub-
manifold D@, are asymptotically invariant under
the flow induced by the vector field f in . (They are
“slowly varying” with time.)

It is obvious from our definitions that a g¢-fold
formal integral defines a g-parametric family of (m —
g)-dimensional asymptotic surfaces.

3. THE APPROXIMATION OF EXACT SOLU-
TIONS WITH HELP OF SOLUTIONS OF
TRUNCATED FORMALLY EQUIVALENT

DIFFERENTIAL EQUATIONS

In this section we define the approximations
Z (¢, € and Z (¢, €) (which can be looked upon as
Nth and (N — §)th approximations) of the exact
solution z(¢, €) of a differential equation

i=f ¢, [€9D).

These approximations are essentially obtained by
composing an appropriate solution of a system that
is up to order " equivalent to the given one with the
suitably truncated transformation connecting the two
systems. Depending on whether the latter is truncated
in such a way as to include powers of € up to order
N — lor N, we obtain Z y,(¢, €) or z y,(t, €), respec-
tively.

With the general methods developed so far we shall
give a proof of a theorem of which several special
cases are already known.»#112 The essential content
of the theorem is that, for solutions z(¢, €) which stay
in the domain of analyticity of f(z, ¢) for all ¢ large
enough, we have

|2(t, ) — Zuwt, )] = DY)
for a time interval of length L/e, where L may be
arbitrarily large if only e is sufficiently small. This is
done in Theorem 1.

Theorem 2 discusses some cases of differential
equations and their solutions which allow an approxi-
mation of a similar kind as described in Theorem 1,
but with the difference that it is valid for a time
interval of infinite length.

Because the approximations are only asymptotic,
the reader should be warned that the calculation of
high-order approximations does not make sense as
long as the convergence of the formal expansions is
not guaranteed, i.e., as long as we use only formally
equivalent and not analytically equivalent systems of
differential equations for our construction of the
approximation.

Theorem 1: Let
SEHR(D) and f~ gmod §,(D),
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ie.,
gFW=foW forsome WEe§g,(D),

and
f©@ =g =4, Aindependent of z.

Furthermore let { (¢, ¢) [with #th component
{a(#5 €)] be a solution of the system

{ =™ e (3.1)

with the property that, for € < p, and all 7 > 1,
{3 (2, €) stays in the domain D, . Here p,, «;, and ¢,
are real numbers with the properties

0< py < 1K(ry), 0<1;<9,

and § and K are the two characteristic constants of
the function:

R(N) = g[N] FW[N] —f° W[N].
Then the function
2ot €©) = WML y(1, €), €)
is an D (e *)-approximate solution of

z =f(zr €), (32)

ie.,

LB_(—I\Z(—LG_) - f(z(N)(t’ e)s E) = D(€N+l)‘
t

(Compare Ref. 13, p. 3.) Moreover, there exists an
exact solution z(7, €) of (3.2) such that z (¢, €) and
also the function

Zon = WV (1, €), ©)
deviate from z(¢, €) on each set
{(t, )|ty <1<ty + Lle; e < p(L)}

only by a quantity of order €, i.e., we have on each
set (3.3)

(3.3)

|z(t, €) — zny(t, ©)] = O(eY),
z(t, €) — Zpy(t, ©)] = O(M).

In (3.3) p(L) is a certain nonincreasing function of L.

Remark: Here the symbol - - - = D(e") abbreviates
the statement: There exists a real positive constant
C (L) such that

[ ] < Ci(L)e™.

Proof: Let R =gtW — foW. By assumption
R = 0 (i.e., all the coefficients of R are zero). Recall
the definition Ry, in the statement of the theorem.
Lemma 2 implies R\, = RIV1 = 0 and R, € $,,(D).
According to Lemma 1, |R | is majorized on D, by

MK ()M — eK(xy)],

i.e., we have for € < p,

R (& (t, €), €)] < Cye™?

with some real positive constant C . But obviously

dz(y)(t, €

1 F (1, €, €) = Riy({n(2, €), €).

The combination of the last two relations yields' the
first statement of the theorem.

Using the fact that f®(z) = A is independent of z,
we conclude from Lemma 1 that df (z, €)/0z on {(z, ¢€):
2 € Dy,, € < 1/k} is majorized by ek, where «, is some
number with the property

4

— Ky

< ky<9d and k=

K(k,).

[Observe that, by definition, d < 6(f), K(x) >
K(«, f), and also

z

AN

Let z(t, €) be an exact solution of (3.2) which for
t = ty differs from z (2., €) by a quantity of order €¥.

Then by a theorem about e-approximate solutions
(see Theorem 2.1 of Ref. 13) there exists a real positive
constant &, such that

. N g]_\f_j\_[ ek(t-~1g)
|z(t,€) — zny(t, ©)| < bye + ' (e - 1).
This inequality is true for all ¢+ > ¢, and all € < p, =
min (1/k, p,) for which z(¢, €) does not leave D, .

We now shall show that there exists a function
p = p(L) such that the above inequality is true on the
set (3.3). Suppose this would not be the case. Then
there would exist a constant L, and a function T(e)
such that

T(e) < ty + Lyfe

and such that for arbitrarily small ¢ we would have

IZ(T(E)a €) - c(N)(T(s)a E)l = K3, (3'4)
where « is some fixed number with the property

iy + k3 < Ky
In particular,
z2(T(¢), €) € D,,.
Hence, if
W=e+ W,
we have

/
|2(T(e), €) — C(N)(T(f), 3]
< [by + (Cy/k) (e — 1)]eY
+ ¢ |WYUL 0 (T(e), €), €]l
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The right side is of order e, thereby contradicting (3.4)
and proving the theoremfor z ,(#, €). That the assertion
of the theorem is also true for Z y,(z, €) follows easily
from the fact that z y, and Z 4, differ by a quantity
of order €V. The theorem is proved.

Remark: In most applications of Theorem 1 one
would like to approximate a certain solution z(¢, €)
of (3.2) characterized by the initial condition z(¢,, €) =
a. The question naturally arises: What solutions
{3 (t, € of (3.1) have the property that

Z(N)(to €) = W[N](C(N)(ta é), 6)
approximates the particular solution z(z, €) in the
sense of the theorem? The only thing we have to
observe in choosing { y,(#, €) is that

|Z(‘,\')(t0v €) - al

is of order V. This, for example, is the case if we
choose {y,(t, €) such that

Llto, € = WHX(a, €).
Indeed, we have

|zt € — al = [(WN o WiT)(a, €) — al.

But the right side clearly is of order €.

The estimates of Theorem 1 are the best possible
for the wide class of differential equations and their
solutions that we consider. However, this does not
mean that we cannot get better estimates if we restrict
the class of differential equations or if we are only
concerned with the approximation of a certain class
of solutions of these differential equations.

Coffey gives an example where

|z(¢, €) — Z(I)(ta €)|

is of order € for all #: —oo <t < oo. Let us have a
closer look at his system of differential equations under
investigation. His equation [Ref. 3, formula (4.43),
p. 435] is trivially equivalent to the system

u = eu(l — u,
Z = z,,
Zy = —o*(U)z,
where w(u) and w1(u) are holomorphic in a certain

domain of the « plane containing # = 0 and u = 1.
By the change of variables

zZ, = — 2 in X,
[o)tu(l — )
3
) ICh)
u(l — u)

the system is brought into the form
u = eu(l — u,
b= ev(l — u) — evu — Le(In w)u(l — u) cos 2x,
X = w(u) + }e(ln o)'u(l — u) sin 2x, (3.5)

where the prime denotes d/du. We see that the system
(3.5) has two “closed orbits”” with equations u = 0,
v=~0and u=1, v =0. For ¢ > 0 the first orbit is
asymptotically stable for t - — oo, whereas the second
has this property for t — co. Observe that

u=9(), v=290"), for t—>—c

and

1 —u=290("), v=900e*), for t—> 4w

such that z, is well defined for both limits although
the transformation (z;, z,) — (x, v) is singular for
u =0 and u = 1. Tt follows that at least those solu-
tions of the original system that are under investigation
in Ref. 3 can be constructed with the help of solutions
of the asymptotically stable differential equation (3.5).

That in the case of asymptotically stable (or
unstable) differential equations any perturbation
theory which uses solutions of formally equivalent
differential equations gives good approximations for
an infinite time interval follows from the following
considerations (see especially Theorem 2).

Before we state and prove the main result, we
mention two lemmas (Lemmas 5 and 6). Lemma 35,
whose proof is omitted, can be found, for example, in
Ref. 14. The proof of Lemma 6 also follows standard
arguments found in Refs. 13 and 14.

Lemma 5: 1f v is differentiable, then

() < y(t) + f tx(5)<f>(S) ds, for t>a,
implies ’
(1) < wla) expftx(zl) du +ftexpftx(tl) duy'(s) ds,

for t > a.

Lemma 6: Let z = (x, y) € R" X R¢,

D=R"x {0}, O=originof RS, m=r+sy,
w, + eF (x,y, €),
v=1,2,-",r
He 9 (eQy), + €Gy(x, p, €), ©5®). 39
v=r+1,---,m
where

F(x,0,6) =0, G(x,0,¢) =0, Z—G(x,o,e)=o,
y
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and Q is an s X s matrix with eigenvalues having
negative real parts. If

z(t, €) = [x(¢, €), y(1, €)]
1s a real solution of
i=f(z, ¢

and « is a sufficiently small real positive number, then
z(0, €) € D, implies z(¢, €) € D, for all £ > 0. More-
over,

lim y(t, €) = 0.

1>
Proof: Observe that, for z real, z € D, is equivalent

to |yl < «.
Choosing k(x) = 2K®@(x, f) [see (2.6)], we have

|G(x, y, €)] < k(x)x |yl
for

zeD,, €< k()]

If for the sake of simplicity we make the additional
assumption that € is diagonal, there exists a real
positive number « such that for all y € R®

Iesﬂtyl S e—-eat Iyl

Thus by standard arguments'®!4 we have

t

1308, 91 < ol + ekl | ™ Iyt Ol dr.
0
Applying Lemma 5 to this equation, we find
y(t, O < |yol €,

Bk) = o — xk(k).

This is a relation from which all the statements of the
lemma immediately follow.

where

Let f be defined as in Lemma 6. Assume f~g
mod §,,(D), where g is of the same kind as f (i.e.,
more exactly, g has also the form (3.6), but with
F, G replaced by some formal power series).

Let { (2, €) and z 4, (7, €) be defined as in Theorem
1. Then z ,(t, €) is clearly an exact solution of the
equation

z =f(N)(Z’ 6),
where
fon = (g[N] [ W[N]) ° (W[N])_1~

The components of f, have the form

; _ w, + eF(N)v(x,y, €)
Ny (e2y), + €G ), (X, ¥, €). 3.7

Here Fy,. Gy, are functions of the same kind as F
and G. In addition, we have f— fy, = O(e¥ ).

More specifically it is not difficult to see that there
exists a constant k(«) such that for z, { € D,

lF(x’ Vs e) - F(N)(E9 7, E)l

LS k(ly — 7l + Iyl Ix — & + €V [y]] (3.8)
and

IG(X, Y, 6) - G(AV)('fi 7, €)|
Sk@Ily — 5l + «<|x — & + '] yl. (3.9)

Here we can adapt k(x) in such a manner that it
coincides with the constant of Lemma 6 denoted by
the same symbol. (Observe that strictly speaking
k(x) also depends on N. However, in our discussion
we keep N fixed.) In the following we shall keep « so
small that f — 2«k(x) = o — 3xk(x) > 0, and we
assume that € < 1/k(«).

Theorem 2: Assume that w is a constant r vector.
For each solution z(¢, €) of

i=f(z,¢) [fdefined in (3.6)],

with z(0, €) € D, and « small enough, there exists a
solution z(y,(?, €) of

i=fin(z & [f,, defined in (3.7)]
such that

A=z(t,e) — z(t, ©)| = O(xe™)  (3.10)

for all times ¢ ,Z 0.

Proof: Assume for the sake of simplicity that A
vanishes for ¢ = 0, i.e., z.y,(0, €) = z(0, ¢). Writing
down the differential equations for z(z, €) and z (¢, €)
and using the inequalities (3.8) and (3.9), we easily
deduce

¢ ¢
A L eK(fAz dr + Kf e FA dr + eNxJ-
0 0

0

¢
e b dT) y

t
At < Eka e PN, 4 kA, + k) dr.
0
Here
A1 = IX(t, €) - -X(N)(t’ G)I,
Ay =y(t, €) — y (1, €.
The right sides of these inequalities are differentiable
functions which we denote by p; and p,es*?, respec-
tively.
Then we have
A L P1> Ay L pe
and therefore
b1 < ekpy + ekre ' p, + ¥ kie ¥,
po < ekrpoe™!" — eap,
+ ex’ke Pip, + ¥ iPke Pl
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To simplify these inequalities, we use the abbreviation

y = ek,
and we obtain

pr < yePlpy + ekp, + Vye
d v
c—l—t (p2e") < ypy + ypa + €y

From the second relation we deduce
t
pae?! < pre! < Vynt + J 1) py ds
0

t
+ [ (0 ds,
0
where

x(s) = ye= ¥,
and therefore

ftdsx(s) gfowdtx(t) = % =InM.

Hence, according to Lemma 5, we have

t
pee® < My [ 1% + o1 .

Using this result in the above inequality for g, , we find

p< (M f € + pu(]ds + ¥l + pu(0]) e

A second integration yields

) < [[dre s (21" + 10

+ o0 + pl(f)]).
Define
A(t) = max p,(s).
0<s<¢
Then

f T + p(] ds < 1le + A1) < 7le¥ + A1)

forr <t
Hence

p(D <y f dre Myt + D[ + AD)]
xk

< (?) (1 + %‘) () + V10 — ).

It follows that
M) < CIA) + €],

= (3)0+

where

or

N

C
A < M) < ——
1< < ()_I—C

for all £ > 0, a result which shows that
A, = (Vi)

as long as we keep « so small that C < 1. But the last
inequality is implied by the assumption about « made
above Theorem 2.

It is now an easy matter to prove that also A, is of
order ¢Vk, and, because

A=A+ A,,
the result (3.10) follows.

Remark 1: Actually our inequalities allow us to
prove somewhat more, namely the fact that

pi(t) = O(ke¥(1 — %),
pa(t) = O(k%N+11ebY),

These relations show that x , approximates x the
worse the larger 1 becomes. But this is not so for the
y approximation, which is the poorest for

t=1/ep.

Of course, this result is not surprising in view of the
fact that we approximated a solution which is asymp-
totically stable for £ — oo,

Remark 2: Notice that we proved the result (3.10)
under the assumption that to zeroth order the system
has the form

X=w, y=0,

where o is a constant r-vector.

The observation that in Coffey’s system (3.5) w is
not constant but a function of u shows that our theo-
rem must be slightly generalized in order to be appli-
cable to the system (3.5).

Indeed, the following generalized version of Theorem
2 makes it understandable that Coffey’s construction
is asymptotic for all times — oo < ¢ < 4 0.

Theorem 2': Let all the assumptions of Theorem 2
be satisfied except for the condition of constancy of
the r-vector o being replaced by the following con-
ditions: (i) y splits into (v, v) and correspondingly G
into (H, K) and G, into (H y,, K(y,) in such a way
that H ,, = H is a function of the variables u only
(i.e., the variables v are not changed in the process of
the construction of the formally equivalent system);
(ii) w is a function of the «’s only.
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Proof: If w is a function of y, then the inequality
(3.8) has to be supplemented by an estimate of the
term

w(y) — o). (3.11)

In general, such a term destroys the result of Theorem
2 by producing a term exp (C/e) on the right side of
(3.10). However, under the condition (i) of Theorem
2" we have

Ut &) = u(t, e).

This conclusion together with the condition (ii) shows
that the term (3.11) can again be dropped. Hence all
the arguments which led us to the result (3.10) of
Theorem 2 are also valid under the more general
assumptions of Theorem 2'.

Remark 3: A slight modification of the proof shows
that the result (3.10) is also true if the system to the
zeroth order has the form

x=w(), y=Q,

i.e., if we drop the ¢ in front of the matrix Q in the
vector field (3.6).

4. HOW TO CONSTRUCT FORMALLY
EQUIVALENT VECTOR FIELDS

We mentioned already that by introducing the
bracket by definition (2.11) we imprint on (D) the
structure of a Lie algebra. As usual in this connection
we associate with each f € §,,(D) a linear operator

ad f: Fn(D) > Fnu(D)
ad fg = [f, gl

by
We have
adfg = Zof(n)en’ g] = goen[f(n)’ g]

= &" adf(")g.
0

n

81—

It

In this sense each operator ad fis representable as an
infinite formal power series. The Jacobi identity
implies that ad f is a derivation of the Lie algebra
Fn(D), ie.,

ad f[g, h] = [ad fz, k] + [g, ad fh].

We have now

00

exp(eadf) =3 €—p'(adf)”,

p=0 P

This definition makes sense because, as is easy to
check, each coefficient of the power series

= exp (cad f)g

is expressible by finitely many ring operations and
differentiations on the coefficients of f and g. We find
forn=0,1,2

RO = g,

A = g0 4 [fO O]

BB = g® 4 [fO g0] 4 [fD) g0)]
+ 3/, 7, g

One easily verifies (see, e.g., Ref. 15)
[exp (e ad f)g, exp (e ad f)h] = exp (e ad f)[g, A].

Every f€ §,,(D) determines an automorphism of
Fm(D) with respect to its structure as a Lie algebra.
This is not only true for §,(®) itself but for any
subalgebra £ of §,,(D). The group of automorphisms
generated by all the elements of the form

exp (eadf), feg,

we denote by Int £ and call the group of inner
automorphisms of £.

All these notions are taken from the theory of finite-
dimensional Lie algebras (see, e.g., Ref. 15). Infinite-
dimensional formal Lie algebras have first been
investigated by Sternberg.® Nonformal aspects of the
theory are investigated and applied in papers by
Moser.* All generalized perturbation theories of
Kruskal’s type are based on the following two
theorems.

Theorem 3: Let A = A® € §,.(D) and f€ F,.(D).
Assume
@) F.( O =% f! as a vector space,
(ii) ad A%,.(D) = P.
Then
A+ ef ~ A + eg mod §,.(D), (4.1)

where
gel.

Remark: The transformation establishing the
equivalence (4.1) is only determined up to an element
of the null space M, of ad 4. In most applications we
shall discuss N, = € and ad AF,(D) = B, but, as
the theorem indicates, the desired conclusion (4.1)
is true under less restrictive assumptions.

Proof: Let us assume (4.1) is true. Then with
W = e + W we have

. A+ e FW=(4+¢)oW,
1.€.,

At g+ edrW)+e@grW) =AW+ e(foW)
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or
g+ A Wl=F+eX=2Z, 4.2)

where

X=e'[foW—[]
+ Ao W—A—eWhAl—gtW
Let * denote ths, projection of an arbitrary element
f € §.(D) onto L corresponding to the decomposition
(1). Assuming WIA11 and gI¥-11 are known, then
XtN-11 jg known [see Lemma 2(i)], and hence ZIM is
known. Define
g™ = 2,

Because 4 = A, the following equation for W&
results:

ad AWWN) = ZW) — 72, (4.3)

According to assumption (ii), ad A4 is invertible on P,
and therefore (4.3) can be solved for WW). This
construction shows that W is only determined up to
an element of the null space of ad 4.

Remark: There is an alternative procedure to
construct W by which W is represented as an infinite
product of successive transformations. In order to
sketch this procedure, assume that

f—F =" + O(M).
By definition /# € B, and by (ii) there exists Wy, such

that

[4, Wiyl = ¥,
Define

g=f—"h + Ly,

where Xy, is defined as X above except that W is
replaced by W ,. Then obviously g — g = O(eP).
In this way we recognize that W is obtained as an
infinite product

W =TT W)
N=1

As an application of Theorem 3 consider
L= {f|feFa®fi =00 =12,"g},
P={flfeg.(Df,=0r=g+1,-,m

Assume A = A® € § and ad 4 is invertible on L.
Then
A+ ef ~ A4+ eg mod §,(D),
where
ged

and according to Lemma 4 the inverse W_, of the
transformation constructed according to the scheme

of Theorem 3 defines a g-fold formal integral of the

system
2= A(z) + f (z, ).

The next theorem deals with the question of equiv-
alence of vector fields belonging to a subalgebra £
of &,,(D) with respect to inner automorphisms.

Theorem 4: Let £ < &,(D) be a Lie subalgebra of
Fm(D). Let A = AP e and fe L.

Assume

(i) & =P o as a vector space,

(ii) ad 48 > P.
Then

A+ ef~A4+ egmodint &, 4.4)
where
geR

(i.e., there exists an element of Int £ which maps
A + ¢f onto 4 + €g).

Proof: We look for an element U € £ such that
V(A +ef)=A+eg gel
This equation can easily be seen to be equivalent to

g+ [AUl=f+eX=2Z
where

X =€V — Df+ e%e™V —ead U — 1A,

Now we repeat the arguments of Theorem 3.

Again U is only determined up to an element of the
null space of ad 4 considered as an operator over L.
It is clear that also in the present case we could
construct the transformation establishing the equiv-
alence (4.4) as an infinite product of successive
transformations in a similar way to how we sketched
it in a remark after Theorem 3. Theorem 4 shows how
to construct the field U € £ such that

A+ ¢ and A4+ e

are connected by an inner automorphism of £. What
is the corresponding transformation of coordinates
z = W({, €)? The answer is contained in the following
lemma.

Lemma 7: If W, is constructed iteratively according
to the recipe

t
w, =e + ef (U oW, dr, 4.5)
0

then the corresponding transformation of coordinate
is given by

2= WL )|, (4.6)
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Proof: We show that in general

8+t = edadvf= (fEW_)W,.

This is certainly true for + = 0. It is therefore sufficient
to show that both expressions for g, satisfy the same
differential equation.

Now we have

gt = G[Ua gt]
from the left side expression for g,. Differentiating
the right side expression gives us the same differential
equation. Indeed, using
W, =e(U-W,)

and Einstein’s summation convention, we find
d
o (fEW_)o W, = —e[f(U°W_),]°W,
+ e[(fFW_p), o WU, - W)).

Taking into account the relation
d
= :{t Wi oW_, = —e(W, , o W_)(U,°W_)) + U,

ie.,
W, U, =¢e(U°W,),
we find

d
Zt (f}_ W—t) °© Wt = _[(fvw—-tp,v) ° Wt] U,p
+ [(fEW_)o Wt],pUp
=e[—g, tU+ Utgl
= E[U’ gt]
Hence the lemma is proved.

It is useful to define a mapping
€:Int F,u(D) = &u(D)
by
Ee* V) = tht=1 )
where W,|,_, was defined in (4.5) and (4.6). We
easily check that this mapping has the properties

G(eead Uee ad V) —_ G(ee ad V) o (g(ee ad U) (47)
and
W(O) — U’

where W is defined by the formula
G(eeud U) =e+ eW.

Now let 9t be again the null space of 4. N, has the
structure of a Lie algebra, and the set defined by

3(A4) = C(Int N )

has the structure of a group. We call it the isotropy

(4.8)

group of 4. Clearly, we have

AFW=A W
for
W e J(4).

We are now in the position to investigate the structure
of the set of all transformations of coordinates which
establish an equivalence of the type (4.1).

Theorem 5: Assume that (i) and (ii) of Theorem 3
are satisfied and, in addition, assume

(iif) Int N8 < £,

If W and W' are two transformations of coordinates
establishing an equivalence of 4 + ¢ to an element
of £, then there exists a transformation S € J(4)

such that
W =WoS.

Proof: (The proof was stimulated by a similar
proof found in Ref. 4,) Write W = e + eW and W’ =
e + eW. To zeroth order the two transformations
coincide. By induction assumption, there exists

S(n-1) € J(A)

such that, if we write

WeSnp=e+ eV, 4.9)
we have
Viya = w, (4.10)

By (iii) the transformation W oS = maps 4 + ¢f
into £. Moreover, it leads to the same expression for
Z™) [see (4.2)] as W'. Equation (4.3) implies therefore
that the field 7" defined by
T —_ WI(N) — V((f\\;) ")
belongs to N, . If we define
Sw = Siv-n © €e 24T
and ¥V y, in accordance with (4.9), we obtain, using
(4.8),
Vivy = Viyeny + €T + O

and therefore
- HN) 1[N]
Vin =V + W =w
by (4.10). This relation completes our induction proof.

As an immediate consequence of Theorem 5 and
(iii), we have:

Corollary: Under the conditions (i), (i), and (iii),
the set of all transformations establishing the equiv-
alence (4.1) constitutes a left coset of the isotropy
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group of A in the group €(Int §,,(D)). Similarly, the
set of transformations establishing an equivalence of
the type (4.4) coincides with the intersection of such a
left coset with E(Int £). Consequently, the set of all
vector fields in £ that are equivalent to 4 + ¢f can be
described as an orbit of J(A4) in {. (For this notion
see Ref. 15.)

5. APPLICATION OF THE THEORY TO
SPECIFIC SITUATIONS, PARTICULARLY
IN MECHANICS

Let © be some connected set of R*" and I the
matrix
0 —E
I = ,
(E 0 )

where E is the m-dimensional unit matrix. With each
element fe (D) we may associate an element of
&2n(D) by

(I grad ), = Zmlf,vau - (5.1)

These vector fields are called globally Hamiltonian,
and it may be easily seen that they form a Lie sub-
algebra of §,,(D).

In fact, we have

[ grad f, I grad g] = I grad {f, g},
where

{f’ g} = Eﬂf f.VIVPg,p
v,p=1

is the Poisson bracket.

Let &, be the set of elements in F(D) whose
coefficients do not depend on z. By §' (D) = F(D)/F,
we denote the quotient space of F(D) with respect to
8o, i.¢., the elements of F'(D) are classes of the type
[+ &o. If we endow F'(D) with the Poisson bracket
{,}, it becomes a Lie algebra which is isomorphic
to the Lie algebra of globally Hamiltonian fields.

Let us imagine that we apply Theorem 4 to the case
of the Lie algebra of globally Hamiltonian vector
fields, i.e., we construct iteratively a field

U=lIgrad V, Veg (D),

such that the operator ad U maps a given Hamiltonian
field into some specified subspace. Lemma 7 tells us
how to find the corresponding transformation of
coordinates: z = W({, ¢). This procedure is, in general,
fairly cumbersome.

We can simplify the procedure in the present case
if we define the linear operator Ad V: §' (D) — ¥ (D)

by

(5.2)

AdVf={V,f}.
Then the formula

WV(C, 6) = ¢4 ng

(5.3)

(5.4)

gives a much simpler construction of W,({, €). (5.4)
actually implies
ee Ad Vf — f° A%
for all f € F(D). Indeed, if we set
WL €) = eV,

and F, = fo W,, then

T (f e WL
= E(f,v ° Wt){l/s th}
=e{V,fo W}
=eAd VF,.

Hence
Ft —_ ete Ad Vf
and our statement follows for ¢ = 1. Moreover, we
find
aw,,
dt

— €eetAd V{V, Cv}

= ee'2TY = (U, o W),

l.e., a relation which shows that the present construc-
tion of W in the case of Hamiltonian vector fields
coincides with the one given in the proof of Lemma 7.
However, the transformation of coordinates W is
much more simply related to the power series ¥ than
it is to the corresponding Hamiltonian vector field U.
Therefore, it would be of great convenience if we
could modify Theorem 4 in such a way that it would
give a recipe for the direct construction of V. Indeed,
using the isomorphism described above, we can do this
simply by leaving Theorem 4 exactly as it stands
except for the replacement

adU—~AdV,

where Ad V' is defined within the Lie algebra (D)
by (5.3).
To see how the method works, let

D= R(2), zZ = (X,y), C = (5, ?7)’
H = y(w + esin x) € H*"(D),
where the superscript “per” indicates that we confine

ourselves to the case of functions periodic in x with
period 27. A4 in our case is given by

A = yo.
Furthermore, let

B = {f| fe F*(D), where the zeroth Fourier
coefficient of f with respect to x vanishes},

Q = {f|fe F**(D); f does not depend on x}.
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Correspondingly the projection -
averaging over x. Because

is the operation of

poft=o0d
ox

and ‘P is spanned by the functions ei?*, p = 41,
+2---, Ad 4 is clearly invertible on PB. Hence the
conditions of Theorem 4 are satisfied. It gives a
recipe to construct a formal Hamiltonian which no
longer depends on an angle variable. We will now
construct this Hamiltonian and the corresponding
transformation up to second order in . Let the new
Hamiltonjan be

K = nw + eg(n, €), g linearin 7.
The condition
eE Ad VH — K,
written up to second order, is

g(n,e)+wg—z:=17sin§+sX,

where
X = {V, ysin & + $e{V, {V, nsin &}}
+ dolV, {V, 1} + ea{V, (V. {V,p}}} + - .

Clearly,
g¥ =0, V9= —(y/w)cos &

Hence we have

Ity
gV + an = — i{?7(:085,77Sin§}
o0& w
1
+ —{ncos & {ncos & n}}
2w
-
2w
Thus, we find
g = —(n)2w), V¥ =0,
and

x =&+ VO &} + 1V, (VO £} + D),

and similarly for y. Observe that the coefficients of
V. y@ pa ... actually are only determined up to an
arbitrary function of #. We normalized them in such
a way that ¥ = 0. We find

K =now A e + O,
2w
€ € . 3
x =& ——=cos & — —; sin 2§ + O(c),
w 4w

y=n—"nsiné + 3 L + O().
w w

The inverse transformation is
n=y+ eV y}+ 11 (VO 3} + O

=y +=ysinx + 4L + OE). (5.5)
® ®
Here V'is exactly the same function as above, the only
difference being that the variables (&, ) have been
replaced by (x, y). This follows from the observation
that the relation
z,= W({ e) = ¢ Ad ng
implies
Zv = W-—lv(za 6) = e-—-s Ad Vzv .

(Our treatment of variables may confuse some readers.
We do not interpret each transformation passively,
i.e., strictly as a transformation of variables, but find
the following point of view more convenient: Treat
all transformations as mappings, i.e., do all your
calculations in one fixed coordinate system, and only
after having accomplished all calculations up to the
desired order reinterpret the transformations as
transformations of coordinates.)

Because K does not depend on the x-like variable
(i.e., &) any longer, the expression (5.5) is an asymp-
totic invariant (formal integral). Recall that V is
determined only up to an arbitrary function .§ of 7.
But because {y, S(»)} = 0, the asymptotic invariant
(5.5) is uniquely determined. This result is confirmed
by an application of Theorem 5 to the present situa-
tion. It shows that J(A) consists of all transformations
of type (5.3), where V is a function of % only. These
transformations are phase-shifts of the kind

E— &+ ev(y),

where v is an arbitrary function of #, and they affect
neither X nor #.

Kruskal’s generalized perturbation theory ® results
from an application of Theorems 3 and 4 to vector
fields over an s-parametric family of r-dimensional
tori, In the following paragraphs we will work out
this point in some detail.

Let z=(x,y), XER", yER’, and D = R" X B,
where B is some compact connected set of R®. Let I*
be the lattice of r-tuples of integers and /7 the sub-
lattice of r-tuples of nonnegative integers. Consider
the following subring of C2(D):

Cye(®D) = {f| f€ Cy(D); f periodicin x,,
v=1,2,+,r with period 1}.

Clearly, each element of Cp, (D) has a Fourier
representation

(x, ) =3 f(y)em =,

pel”
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where
.
(p|x= levxv ,

and the right side is uniformly convergent on each
set D,, 0< «k <d(f). Moreover, the Fourier,
coefficients f,, belong to C¢(B). Indeed, we will show
by adapting a proof of Moser to our situation that

ol = sup 1,00 < Iflee™ ™ (5.6)

where |f|, was defined in (2.1) and |p| stands for
>+ . |p,l. For this purpose we shift the path of
integration over each variable &, in the integral

£ = f - f TEF(E, y)etritod

from the real axis to Im & = —psgnp,, where
0 < p < k, and find

£, < | f], €7®ImE = ||, eIl

This is true for all p smaller than «; hence the in-
equality (5.6) follows.

We are now in the position to show that the gener-
alized Kruskal perturbation theory discussed in
Ref. 3 drops out as an application of Theorem 3 to
vector fields over D (i.e., over an analytic family of
tori).

Theorem 6: Let w be a constant (r + 5) vector with
the last s components vanishing and assume that for
each p € I" we either have

[(p | @) > y(IpI" + D7,
y, 7 real positive constants, (5.7)
or else (p | w) = 0.

The set of all pel” such that (p|w)=0is a
module over the integers. We denote it by ¢ and its
complement in /7 by ¢’.

Let fe (D) [ie., the module of (r + s)-tuples
of formal power series over Cj,.(D)] and

O = f|feqin S =3 £, with f, € B, (D));

peo
then
© + ef ~w + egmod ¥, (D)
and
ge g,
Proof: We have to show that the conditions of
Theorem 3 are satisfied. If we define

R = fle FLD); f = z,fpe‘ZVi(p'z)

PET

with fp € S‘r-#s(%) ’

obviously the condition (i) of Theorem 3 is satisfied,
i.e., we have

Tn=LaP.

The only thing left to show is that ad w is invertible
on B. It is easy to see that this condition boils down
to the following statement: If

f=3 £, with £, € CYB)

pea’

belongs to C2, (D), then also

per

g = fm 2ri(p|a)
pea’ ((/J ‘ p)

does. Again we adapt a proof of Moser to the present
situation. Choose numbers «, §(g), and p such that

0<x<d(g) <p<oif)
We have on D,

fw 273 (pl|ax)
— ¢

(o | p)

Hence

< iupr + 1y 1S, e,

sup g(x, y)

(x,v)eDx

gl =

exists if the sum
E(lp]f + l)e—lpl(p—K)

pea’

exists. This sum now is bounded by the integral

sl M LR

Remark: We saw that a condition of the kind (5.7)
is sufficient to insure that all the formal power series
constructed with the help of Theorem 3 belong to
F,s(D). Such a condition has first been considered by
Siegel'® in connection with the question of stability
of an analytic mapping with a fixed point.

From a purely computational point of view, one
would probably better redefine the set o in such a way
as to include not only the p’s for which (p | w) =0
but also those for which (p|w) < O(e). Then for
the remaining p’s we would have [(p|w)| > ¢, a
condition which is obviously stronger than (5.7).

Coffey in his paper asks if degenerate perturbation
theory can be made canonical to all orders. Under
certain conditions this is indeed the case, as will be
stated and proven in the next theorem.

The next theorem is an adaption of Theorem 6 to
Hamiltonian systems with m degrees of freedom.
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Theorem 7: Let w be a constant (r 4 §) vector sub-
jected to the same conditions as in Theorem 6. Let D
be defined as above, with the only difference that now
r + s = 2m, and define

L= {f]feF@); /=3 f¢m )

Ppec

with £, € F(B). Then for any f € F*'(D)/F, we have
(@] ) + ef ~(w] 7) + eg mod Int F*

and g€ 53, where j = (y1,**,»,) and y, is canon-
ically conjugate to x,, v = 1,2,---,r.

Proof: As before, the essential part according to
Theorem 4 is to show that Ad (w J|) as a linear
operator over the Lie algebra §'*(D) can be inverted
on

P =f|7eBDis =3 £ 0 1, € C':(%)}‘

(Observe that p = 0 belongs to the set 0. Hence the
projection of fonto B is uniquely determined although
its projection onto £ is determined only up to a
constant.) This is done exactly the same way as in the
proof of Theorem 6.

Theorem 7 is interesting because it shows that for
each Hamiltonian (w | 7) + ¢f there exists a formal
canonical transformation such that the transformed
Hamiltonian depends only on the angle combinations

(PIX), PGO’.

Especially, it becomes independent of x whenever o
contains only the origin of the lattice I* (compare
Ref. 3). In this latter case the perturbation theory
corresponding to the equivalence established in
Theorem 7 is known as nondegenerate perturbation
theory. Because the transformed Hamiltonian does
not depend on &, there exists an r-fold formal integral
given by

Ny = (5.8)

Theorem 5 implies again that the new Hamiltonian as
well as the r formal integrals are uniquely determined.
[The isotropy group of the zeroth-order vector field is
generated by canonical transformations affecting only
the variables 7,,,, " " * , 1; and by *“‘phase-shifts”

Ev - Ev + GU‘,(?], E)]
Given an analytic system
2=[(z, €, [€Hu(D),

it is, in general, not difficult to construct formally
equivalent systems by applying Theorem 3 in a

w(z,e), v=1,2,---,r.

KUMMER

convenient way. To each formally equivalent system
there corresponds a perturbation theory of Kruskal’s
type, and, because the construction of the approximate
solution requires that the truncated equivalent system

{ =™ 0

can be solved for small values of N, the question
arises: Given an analytic vector field, what is the sim-
plest formally equivalent vectorfield ? If oneisinterested
only in relatively rough approximations as described
in Theorems 1 and 2, formal equivalence is enough.
However, even from a purely computational point of
view, the question of convergence of the formal
expansions is not unimportant because, if convergence
is proved, one is assured that the effort and the time
spent in computing higher-order approximations are
rewarded by a better knowledge of the exact solution.
The problem now becomes much more difficult
and can be expressed as follows: Given f€ $,(D),
find the “simplest” vector field g € §,,(D) such that

f~ gmod $,,(D).

In this generality the question cannot be answered.
But in special important cases many results have been
established in recent years by Moser and coworkers in
New York and Arnold!” and coworkers in Moscow
based on earlier works by Poincaré, Siegel,'® Kolmog-
orov,® and others. We intend to discuss the implica-
tions of those works for the question of convergence
of Kruskal's generalized perturbation theory in a
future work. Here we only want to point out that the
formal aspects of Moser’s work about the permanence
of quasiperiodic motions under perturbation can also
be based on (a somewhat modified version of)
Theorem 4. This is a slightly different point of view
than that taken by Moser himself.

Theorem 4': Let £ = §,,(D) be a Lie subalgebra of
F(D). Let A = AP € € and fe L. Assume

(i) =N, 0LeP
as a vector space, where 9t is the null space of ad 4,
(i) ad A2 > P.
Then there exists N € 91, such that
A+ N+ ¢f~A 4 egmod Int £,
where g € I
The proof of this theorem is exactly the same as of

Theorem 4 except that Z (see 4.2) in each step now
splits into three parts.
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Notice that by the formal procedure described in
Theorem 4’ the original vector field 4 + €f is “re-
normalized,” i.e., modified by a member of 9N,
before it becomes equivalent to 4 + eg, g€ £. As
long as we are only concerned with the formal aspects
of the equivalence, such a renormalization is not
necessary. One can instead make the replacement

gtA@ﬁ“)Q

and proceed as described in Theorem 4. However,
such a “‘renormalization”” may become essential if we
are concerned with the convergence of the formal
expansions. It is exactly this procedure, proposed first
by Kolmogorov, together with a systematic generaliza-
tion of Newton’s approximation method, that leads to
much deeper insight into many old questions of
classical mechanics.

We have already mentioned an example where
renormalization in classical mechanics becomes
necessary to ensure convergence, namely the perturba-
tion of a quasiperiodic motion, which, for example, can
occur in a system of coupled oscillators. The simplest
Hamiltonian in R*" describing a quasiperiodic motion
with characteristic numbers

(g, ’anl:”'»Qr:Q‘ﬁh“' 7Q'm:
Qm-\-l, DY Q21n—r)
QV=0’ v=1,2!.."r!
Quy==Q,,, v=1,-,m—r
(for this notion, see Ref. 4) is
T m
A =zwvyv + z vavyv+m—r'
v=1 v=r+1
Here we assume thatally,, v =1,---,2m — r, vary
in a neighborhood of the origin of R?™~", the variable
Ymsv 18 canonical conjugate to y,,,, v =1,"-+,m —
r, and the variables canonical conjugate to the y,,
v=1,---,r, are denoted by x,,-'-,x, and

assumed to vary over all of R". In other words, we
put © = R" x {0}, where 0 denotes the origin of
R?m~7 and again we use the notation

z=(x,y)x€R",ye R*™",

In the Lie algebra of the Poisson brackets over D we
have

T 2m—r

adaf=30, L5 0, Y

=1 Ox, verit dy,
Let §™'(D) be the subring of F(D) whose elements
have coefficients that are periodic with period 1 in the
x-variables.

Define the operator Q by
Q(f)x, y, €) = f(x, 0, €)

2m—r f

+ 2 o5 (0,0,
v=1 ayv
1 2m—r a2f

x,0,€)y,V,-
2 v, u=r+1 ayvay‘, ( G)y y,u

Observe that, if
gel ={g|geF(D); 0(g) = 0},

then the canonical equations belonging to the Hamil-
tonian A 4 eg have the form

£ =0+ Oy,

7= Qn + O().

Hence, if we assume that for some

feH*(D),
A+ ef ~A+ e,

modulo a convergent transformation, the canonical
equations belonging to the perturbed Hamiltonian
A + ¢f have a quasiperiodic solution with the same
characteristic numbers as those belonging to the
Hamiltonian 4.

The eigenvectors of Ad 4 belonging to the subspace

o) =h
of F¥(D) are
egm.(pm, e2ﬂi(ﬁlx)yv|v=l.m.f’
e2ﬂi(pl®‘)yvy”lV‘”=H1'..-,2m—rp er

with eigenvalues 2mi(p | w) + Q, — pQ2,, where
pelr,v,u=r+1,--- 2m—r,p=0,1.

If we assume that there exist positive constants y
and 7 such that for all p € I different from zero the
absolute values of these eigenvalues are larger than

»(Ipl” + 1)

and all Q, (w=r+1,---,2m —r) are different
from zero and from each other, then the only eigen-
vectors with the eigenvalue zero are

1’ yvlv:l.?."'n" yr+vym+v|v=1.2.~~-,m—rs

where we can disregard the first one because two
Hamiltonians differing by a constant are identified.
The null space 3, of Ad A is the span of these
functions and has dimension m. If we define

B ={f|feF*(D), Q(f) =f, fhaszero

component in N4},



22 MARTIN KUMMER

then a similar argument as applied in the proof of
Theorem 6 shows that the assumptions of Theorem
4’ are satisfied. Hence we can conclude that any per-
turbed system if suitably modified is formally equiv-
alent (via a canonical transformation) to a system
which has a quasiperiodic solution with the same char-
acteristic numbers as the unperturbed system.

The essential point of Moser’s work is that this
equivalence does define a transformation of variables
which is not only formal but analytic, thereby proving
that a quasiperiodic notion is conserved under
perturbation if the Hamiltonian of the original system
is modified by a suitable function of a maximal but by
assumption finite set of functionally independent
integrals (i.e., members of M ,). This result is of great
physical value if the parameters represented by those
integrals can be compensated for by the same number
of free parameters in the physical problem. For
details see Moser’s original work? and also Ref. 6.
The reason why we briefly discussed Moser’s work is
first to show that the formal aspects of it are based
essentially on the same algebraic considerations as
Kruskal’s perturbation theory and secondly to
demonstrate that ensuring any kind of convergence
of the formal expansions of the type proposed by
Kruskal may only be possible after modifying the
original system slightly. There is at least one case in
which the perturbation expansion, as originally
conceived by Kruskal,! converges, namely the case of
a system

x=1,

P = eA(x, €)y, (5.9)

where ® = R X R®and 4 is an s x s matrix belong-
ing to ,,:(R) and periodic in x with period 1. It is
easily seen that in this case Kruskal’s perturbation
theory constructs an analytically equivalent system

S = l’

# = eB(¢)n, where B(e) is independent of £. (5.10)
This follows from a simple application of Floquet’s
theory to the present situation. Indeed, let @(x, €) be

the fundamental matrix solution of (5.9) with the
properties

D(x, 0) = D0, ¢) = E (= 5 X s unit matrix).
Define
() = [D(, €) — E)/e
and

éB(e) =InP(1,¢€) = % gz%k—} D*e)e”,

k=1

where the right side is convergent for ||®@(¢)| < l/ein

some norm | |. One checks that (5.9) is analytically
transformed into (5.10) by the transformation

§=x,

1 = P(x, €)y,

where P(x, €) = ®O(x, €)e~*9z, proving the con-
vergence of Kruskal’s expansions in this special case.

The convergence question becomes much harder to
tackle in the nonlinear case. We intend to come back
to this question in a later paper.

6. OUTLOOK

We have demonstrated that any perturbation theory
which uses formally equivalent systems for the con-
struction of the approximate solution according to the
recipe given in Theorem 1 avoids “secular terms.”
In general such an approximate solution is asymptotic
to the exact solution for a time of the order L/e.
However, this time interval actually is of infinite
length in the case of stable differential equations
(Theorem 2).

It is an open question whether Theorem 2 is also
true in the case of arbitrary differential equations
provided one approximates a solution whose integral
curve lies completely on a stable manifold associated
with a singular solution.

We also showed how to construct formally equiv-
alent systems in general by using some algebraic
ideas of Moser (Theorems 3 and 4). Applying these
ideas to Hamiltonian systems, we demonstrated that
degenerate perturbation theory (in the sense of
Coffey®) can be made canonical to all orders provided
that (i) to zeroth order the phase space decomposes
into a family of invariant tori, each of them carrying
a quasiperiodic motion with frequencies w,, - * * , w,,
(ii) for all g € I" for which (g | ) # 0 the ’s satisfy
the conditions (5.7).

Finally we showed that in the case of linear periodic
systems the perturbation theory, as originally presented
by Kruskal,! converges.
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It has been conjectured that the Lagrangian functional

G(D) =I BO(~9% 4+ 1)O — 1@ dr

provides an upper bound for G(g,), where g, is the ground-state eigenfunction of the nonlinear field
equation ~V2p 4+ ¢ — ¢* = 0, provided that G(®) is constrained to be stationary with respect to
variations in the amplitude of ®@. In this paper we demonstrate that this conjecture is true. The effect of a
stationary-scale constraint on G(®) is also shown to guarantee an upper bound. Complementary func-
tionals arising from an Euler-Hamilton approach to the problem are investigated. Unfortunately, these
do not (as in more favorable circumstances) provide lower bounds for G(g,), but merely alternative upper
bounds. With a very simple trial function, a complementary bound is closer to G(g,) than is G(®).

1. INTRODUCTION

The nonlinear field equation
(1)

is among those which have been suggested to describe
extended elementary particies, and it also arises in a
nonlinear electromagnetic theory.! In the (3-dimen-
sional) spherically symmetric case with

—Vig+g—¢*=0

0<r< o, )

it has been proved® that there exists a countably
infinite set of analytic eigenfunctions {¢,(r)} which
are characterized by a discrete set of initial values
{p.(0)}. These eigenfunctions have the following
properties:

@ = o(r),

@,(r) has n zeros, n=0,1,2,+++; 3)

@,(r) ~aconst X rtexp (—r)forlarge r; (4)
dg,

=0 when r=0. ®)

dr

For the intervening intervals of ¢(0), other solutions
of Eq. (1) exist which are asymptotic to +1 when r
is large.

Approximate solutions for some of the eigen-
functions have been investigated by Schiff and his
coworkers®=® using variational techniques. Equation
(1) is the Euler equation for the Lagrangian functional

G(®) = } f (VDR + 0% dr — } [0tdr, (6)
which is the same as
G(®) = %f@(_w + 1) dr — i—fcl)" e (7

provided that @ is well behaved and goes to zero fast
enough at infinity. If we now suppose that ¢ is an
eigenfunction and let

O =¢+dp
be an approximation to ¢, then it follows that

G(®) = G(¢) + 6G(9) + 6°G(g) + 0(3¢™), (9)

(8)
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which is the same as
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where

G(g) = } f ot dr, (10)

0G(¢) = 0, (1n

and
82G(g) = %fa(p(—w £1—3¢Ddgdr. (12)

The stationary value G(¢) represents the ‘“‘energy”
associated with the eigenfunction ¢.

The sign of 0%G is not clear. It follows from Egs.
(12) and (1) that

if 8p =cp, 8°G= —ezf(p4 dr <0, (13)

and so evidently there are some d¢ for which 0°G is
negative. (Another choice which illustrates this is
dp = edyp/dr) Yet the operators —V2 and 1 are
positive, and so it is reasonable to suppose that there
are also some d¢ for which 6%G is positive; such a
d¢p would perhaps de-emphasize regions where
32> 1.

In Refs. 3 and 5 it is suggested that if @ is con-
strained to satisfy the relation

f (VO + &% dr = f O dr

(which is one of the identities satisfied by the eigen-
functions), then for the “ground state” ¢ = ¢, the
Lagrangian functional furnishes an upper bound

G(®) > G(go)- (15)

The reason given is that if (14) holds, then from (6)
it follows that G(®) reduces to

(14)

9@ = 1 [(V0F +0dr (10
which by its nature is a functional with a minimum
value; this value can only be raised by constraints
such as (14). In fact, subject to (14), S(®) is indeed
stationary around ® = ¢, but the second-order
variation is still equivalent to expression (12), where
d¢ is now subject to conditions imposed on it by (14).
As it is by no means obvious what the effect of these
conditions is, the sign of 4G remains uncertain.
However, the numerical evidence presented in
Ref. 3 does support the conjecture that (14) implies
(15). In the present paper we demonstrate that the
sign of 82G(,) is settled by the magnitude of 4, the
second smallest eigenvalue of the radial equation

(—V2 + D)8 = 3420. (17)

Subject to (14), 6°G(g,) is positive if 2, > 1. A good
approximation to 4, is 1.28, and so the conjecture of

Schiff and his coworkers is well substantiated. (We
assume throughout that third- and higher-order
variations can be neglected, so that the question of
whether a functional is an extremum is settled by the
sign of its second-order variation.)
The effect of an alternative constraint

2 f (VD) + 30%] dr = 3 f Odr (18
upon G(®) is also considered; again, this guarantees
an upper bound on G(¢y). In addition, complementary
functionals arising from an Euler-Hamilton approach
to the problem are investigated. These do not provide
lower bounds for G(¢,) as might be hoped, but
merely alternative upper bounds. Using a simple
trial function, we see that a complementary functional
provides a closer upper bound than does G(®).

2. IMPLICITLY CONSTRAINED LAGRANGIANS

The conditions (14) and (18) respectively arise when
the Lagrangian functional G(®) is made stationary
for variations in A, the amplitude of @, and in «, a
radial scale parameter.! To analyze the situation, let
us work in terms of the positive functionals

X(®) = f (VO dr, Y(D)= f @2 dr,

2(0) = ( @* dr. (19)
Then from (6) ;
GOM)) =X +3Y—3Z (20)
so that
G(AD(wr)) = G(4, )
= $A*(X[0) + 4%(Y[0®) — }A%(Z[o®). (21)

Thus 0G/0A vanishes when

A% = A2 (say) = (f + o%) / (%) (22)

and 0G/0dw vanishes when

o = ol (say) = (34*Z — 6A4°Y)[24°X. (23)

Evidently, if AD(ar) is treated as a new ®(r) so that
A = o = 1, the stationary conditions (22) and (23)

are precisely the constraints (14) and (18).
From (21) and (22) it follows that

G(A,, 0) = i(g + X)g(;z;)—; G(®(ar)) say, (24)

0(3

where

GO() = %( f (VDY + D7 dr)2( f o dr)_l. (25)
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The unrestricted functional G(®) is equivalent to the
Lagrangian G(®) subjected to the stationary-ampli-
tude condition (14). G(®) can be thought of as an
implicitly constrained Lagrangian, and is independ-
ent of the amplitude of ®.

In a similar way, from (21) and (23), we have

G(4, %) = (FHAXNAZ — 24°Y)}

= GH{AD(r)} say, (26)

which indicates that the unrestricted functional

Gl(@) = (.—_,27)%( f (VY. dr)g( J (@ — 20?) dr)‘% 7

is equivalent to G(®) subjected to the stationary-
scale condition (18). This second implicitly constrained
Lagrangian G'(®) is independent of the radial scale
parameter.

The doubly stationary G(4,, «,) takes the form

G(Ay, o) = (16 YX3[27Z2)}
= (D () = G'(A4,D(r)),

which we can write logically as GT(®). This functional

- 3 3 3} -1
Gl(@) = (19) ( f 2 dr) ( f (VD)2 dr) ( f o dr)
(29)
is equivalent to G(®) subjected to both of the con-
straints (14) and (18) and is independent of both A
and o.
It follows from Eqgs. (21)-(23) that at (4,, «,)
9°G 9°G °G _ 9°G 3G
— < 0, — < 09 5 > 3
0A® Oo® 0Ade =~ 0A% 0u®
so that G(4, «) has a saddle point at (4,, «,). How-
ever, using (24) and (26), we can show that
82

62
[a—; G(A,., “)}Mf 0, [5; 6(4, °‘°)L=A.,> 0,
31)

and so G(4,, «) and G(4, «y) each have minima at
(Ay, o). There are no other relevant turning points,
which implies that

(28)

> (30)

G(@(xr) = G(@(xgr)) = GT(D) (32)
and
G'(AD(r) > G'(4,2(r)) = G'(D). (33)
Thus, in particular, when 4 =« = 1,
G(®) > G'(®) and Gi(®) > GH(®), (34)

and so G(®) and G'(®) are each possible maximizing
functionals for G(¢).
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Of the three implicitly constrained Lagrangians,
G(®) is the easiest to work with. In Sec. 3 below,

we will show that
G(D) > G(gy) (35)

without any restriction on @ other than it be close to
¢, . Since O(o,r) is an allowed O, it will then follow
from (32) that

GH(P) > G(¢) (36)
and finally from (34) and (36) that
GH(D) > G(gy)- (37

In practice, for a given form of trial function @,
one would try to evaluate G, thus obtaining a better
bound than either G or G' in general.

3. JUSTIFICATION OF THE RESULT
G(®) > G(gy)

If we again suppose that ¢ is a radial eigenfunction
and set

D =¢p+dp
in expression (25) for G(®), we find that
G(@) = G(9) + 6G(9) + &#G(9) + 0(0¢%), (39)

where

(38)

G(¢) = G(g) = 1 f ¢ dr, (40)

3G(p) = 8G(¢) = 0, (41)

and

5°6(g) = } f S5p(=V* + 1 — 3¢%)dg dr

+ ( f #0g dr)2 ( j ¢ dr)_l. 42)

The first term on the right of (42) looks the same as
0%G [expression (12)], but, if we were dealing directly
with 82G, we should need to consider the effect of the
constraint (14) on d¢. Here in (42) there is no restric-
tion on d¢ (other than well-behavedness and being
small enough at infinity); this is a merit of the implicitly
constrained Lagrangian.
It is convenient to think of Eq. (42) in the form

5°G(g) = f 8¢ Qg dr 43)

where
Q =3~V 41— 3¢} + ( f ot dr)_ g% (6. (44)

The operator |<p3>§qo3| is a positive-definite nonlocal
operator with the property that for any »

1% (¢ % = ¢° f @y dr; (45)
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the notation is Dirac’s. We notice that, from (1),

Qg = 0; (46)

this is expected since G is insensitive to amplitude
change.

Let us investigate the consequences of 62G being
negative for some d¢. The only negative contribution
to Q is —3¢2% and ¢? is finite and exponentially de-
creasing for large r. Thus %G is certainly bounded
below for acceptable d¢. It follows that, since Q is
self-adjoint, there exists a smallest positive number
p?* for which

[60(2 + poH0p dr

(%

(47)

has a minimum value of zero, and this minimum
value will occur when d¢ = €f, say, where

(Q + f2¢®)0 = 0. (48)

Now multiply (48) on the left by ¢ and integrate over
r-space. Then because % is not zero and Q is self-
adjoint, it follows from (46) that

f 70 dr = 0. (49)

Hence the nonlocal part |@®){¢®| of Q annihilates 0,
and from (44) and (48) we have simply

(=V2 4+ 1) = 34¢%, (50)
where

26t =3(1 — ) > 0. (51)

It is clear that A must be positive, since (—V? 4+ 1)
is a positive operator and a zero 4 would correspond
to the unacceptable 6 = r~lexp (—r). Also we know
that the eigenvalue 1 = } corresponds to the irrelevant
6 = . The vital question is then, are there any other
A-eigenvalues in the interval

0<A<1? (52)

If there are, this line of argument does not help us.
If there are not, then evidently there can be no d¢
for which 62G is negative, and we will have established
the maximizing property of G(®).

We can answer this question in the simplest case
when @ = @y(r), the “ground state’ radial eigen-
function (nothing we have said so far restricts us to
any particular eigenfunction ¢). It is sensible only to
consider radial trial functions, so that § = 6(r) and
Eq. (50) becomes

d2
(- + 1) = 3190, 0<r< o0 (53

Since @y(r) is unknown (otherwise we should not be
bothering with approximate methods), an approxi-
mation to it has to be used in Eq. (53) to determine
the A-eigenvalues. This introduces a first-order error,
but its effect is on 6*G which is already second order,
and so the net effect on G is third order. We are
already neglecting third-order terms, and so this step
is justifiable as well as necessary.
A simple approximation to gy(r) is the function®

Cexp (—yr), C=4J2, y=43, (54

the choice of C and y being made to obey the con-
straints (14) and (18). With this approximation, the
eigenfunctions of Eq. (53) are’

0u(r) = r U (CA exp (—yr)}, k=0,1,2,-,
(55)

where J,-, is the Bessel function of order p~'. It must
vanish at r = 0, so that the equation determining
A is

J(Cid) = 0. (56)
The lowest two values of 4, turn out to be
}«0 = 0-33024, ;»1 = 1.27931. (57)

The exact value of 4, should be }, corresponding to
0, = @,. The fact that the error in 2, is only 19
testifies to the reasonableness of the approximation
(54) to @,. One would hardly expect a 289, errorin 4,,
and so it seems certain that there are no other A-
eigenvalues satisfying (52). We conclude that 82G(g,)
is positive, so that G(®) > G(p,) if @ is close to @,.

It seems unlikely that the vital question (52) can be
answered simply for other eigenfunctions ¢,(r). Even
with the approximation (a — br) exp (—cr) for ¢,(r),
Eq. (50) becomes too complicated for further analyt-
ical progress. Thus we should have to resort to
numerical work, which is probably not justified in
this context.

4. COMPLEMENTARY FUNCTIONALS

An eigenfunction of Eq. (1) can be regarded as a
solution ® = ¢ of a more general equation of type

T*T® + f(®) =0 in V, (58)

(59)

where T is a linear operator and T* is its adjoint
defined by

subject to
O =0 onadV,

f UT® dr = f (T*U)® dr. (60)
14 14

Here U is an arbitrary function in the space of T ®.
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To identify Egs. (1) and (58), we take V" as the whole
Euclidean 3-space and can choose either

T=grad, T* = —div, f(®)=0 — D3 (61)
or

T*T = (=V:+ 1), [(®)=-0°  (62)

or possibly even make some choice intermediate
between (61) and (62). Complementary variational
principles have been developed®~? for equations like
(58); they arise from the decomposition of (58) into
the pair of generalized Euler-Hamilton equations

oH
To=5"=U0, (63)
w0l _ _
™ =25 f(®@) (64)

and from consideration of the generalized action
functional when one or other of (63) and (64) is satis-
fied identically. If we set

L= T*T (65)
and
]
F(®) = f 1(0") dd, (66)
then the complementary functionals
G(@) = f [OLD + F(®)] dr ©7)

and
J(®) = f {—1OLO + F[jY(—LO)]
+(LO)f (L)} dr (68)

are stationary for variations of ® around ¢ and have
the common stationary value

G(p) = J(¢p). (69)

With either of the choices (61) or (62) (or an
intermediate choice), the functional (67) is just the
Lagrangian functional (7). Since

G = } f SelL + f'(@dpdr  (70)
and

8% = —} f (Log){L™ + L (I} (L) dr, (71)

it is clear that G and J provide complementary upper
and lower bounds to G(¢) if f'(¢) is nonnegative. For
Eq. (1) the most positive choice of f'(¢) is obtained
from (61), i.e.,

f(@)=1—3¢" (72)

This can still be very negative, since® ¢y(0) ~ 5 and
this is the smallest of the ¢,(0). Thus, in circumstances
when %G is positive with a partly negative f'(¢), it is
probably a question of the positive operator L
dominating the f(¢). In such a case one would not
expect L~! to dominate [f'(¢)]~*: rather the opposite,
since for example 3 —2>0but 31 —2"1<0.
Hence in these circumstances we might anticipate
that J(®) is also an upper bound to G(g¢). Precisely
this situation does arise with linear equations.™

It is often convenient to remove the inverse func-
tional /1 from (68) by expressing everything in terms
of a trial function y specified by

LY+ f(y) =0, (73)
so that
J(@) =J(=L7Yf () =Jlxl say, (74)

where

] = f (=3 DL (5) + F(p) — 2f (1 dr. (75)
It follows from (67) and (75) that

G(y) — Jlx] =} f (@ — PL® — g)dr > 0, (76)

so that if G(yx) and J[y] are each upper bounds, then
J[x]is the better one.

With Eq. (1), the simplest J-functional arises from
the decomposition (62) and is

Jlyl = f (=LY% + 3 dr, L= —V2 4 1. (77)

An investigation of this functional which parallels that
of G(®) in Secs. 2 and 3 shows that the amplitude-
optimized form

Tz = 4 1t an) (o o)

is an upper bound to G(¢) (= J(¢) = Jlg]) in the
case ¢ = @,. The proof again turns on the A-eigen-
values of Eq. (53).

The decomposition (61) leads to the functional

(78)

) = (=3 = -V ~ )

+ ' — D dr, (79
which is more difficult to analyze.
Using the simple approximation for gq(r),

y = Ae™™, (80)

we obtain
Gyl = 1.540, « = \/3 = 1.7321,
Tyl = 1514, o = 1.733,

@81
(82)
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and~the stationary value of J'[y] is actually the same
as J'[y] to this accuracy, with the same optimum
a-value. The stationary value calculated directly by
numerical methods? is
G(@o) = J[@o] = 1.503. (83)
Thus, in this situation, the complementary J-
functional provides a better upper bound than the
simpler G-functional. This also happens with linear

equations.’* We can merely regret that it does not
provide a lower bound.
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From Dirac plane waves, we can define a gy;, T%,, and €%. It is found that Dirac plane waves satisfy,
in addition to the Dirac equation, a set of nonlinear field equations involving these quantities. General

e”; plane waves do not satisfy these equations.

I. INTRODUCTION

We here obtain some new mathematical proper-
ties of Dirac plane waves. Dirac plane waves define
a g;;, '}y, and €. We find that Dirac plane waves
satisfy, in addition to the Dirac equation, a set of
nonlinear equations. We find that this property is not
shared by general e*; plane waves.

II. RELATIONSHIP BETWEEN SPINORS
AND g.;, T, €%

Starting with two 2-component spinors y,4 and ¢4,
we define a set of 4 null vectors?

h; = 6;11}95(175]} ’
m; = 0?4BXA¢B s M= Uf{B‘ISAXI}' 1)
We then define e*; by
e = (2)“%("'7”5 — M),
& = @770, — m),
&= @7~ 1,
e, = @7, +n).

I, = oy 4x»

@

This implies
L=k~ =@k + ¢,
m =)=, —ie?), =@ =e, + ic).
3)
g.; is defined by
gi; = €% eﬁj Zup = lin; + nly — mgm; — mm;,  (4)

where g,, is the Minkowski metric. I}, is defined by

i ; 0€% % on; o al; 't om; i om;

L =e =l—+4+n—- —-m .

TRk o ox* ox*
)

Thus y, and ¢, define a set of functions g;;, I'};, and
e*;. We notice, as a result of (4) and (5), that

agij
—— T
ox®

i85 — Ulim = e =0 (6)
is identically satisfied. We refer to g;;; as the covariant

derivative of g,;.
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Under constant Lorentz transformations, I'}, is a
tensor function. Let us consider the equation®*
ori,
37 + Ty
We shall show that Dirac plane waves satisfy this
equation. Furthermore, we shall show that the
covariant derivatives of all functions constructed
from g;;, U, €%, and 0, all vanish as a consequence
of (6) and (7).

~ Tl =T lh =T =0 ()

HI. VANISHING OF ALL COVARIANT
DERIVATIVES

We first consider (dg,;/9x").,,. We take the covar-
iant derivative of (6). This gives

6g. A
(——E) - ka;mgtj - Fgl:gti;m - Fj’k;mgit
im

ox*
. - Ftikga't;m =0 (8
Then, using (7) and (6), we get
dg.,
=21 = Q. 9
(axk );m ( )
We next investigate (917/0x’)., by taking the

covariant derivative of (7). Then, using (7), we see

that
or
( ch) ~ 0.
Bx’ s

We next consider (0%,,;/0x"0x").,, by first taking
0/0x™ of (6) and then taking the covariant derivative
of this equation. Then, using the previous results (9)
and (10) and also (7) and (6), we find

2
( a g’if ) = 0'
ax"axk im

We may then look into (82I'j,/x"0x%).,, by taking
d/ox™ of (7) and then taking the covariant derivative
of this equation. Using (10) and (7), we get

(2?&)=Q
8xmax‘ H

Continuing on, in this manner, we can consider the
covariant derivative of all the derivatives of g;; and
['%.. Using the results for previously obtained lower-
order derivatives, we then conclude that the covari-
ant derivatives of all these functions are zero,
thus proving the theorem.

For the 16 variables, we have, as a consequence

(10)

(1

(12)

azz
ak

eaz';k sze (13)

Using the same procedure as above, we also find
that the covariant derivatives of all functions con-
structed from ¢*; and 9, are zero as well.

IV. DIRAC PLANE WAVE SOLUTIONS OF
THE FIELD EQUATIONS

Dirac plane wave solutions can be expressed in
terms of y, and ¢ by means of

1t 751
2+ ¢
v =1} ; (14)
: n— ¢
- 952
We introduce the spin metric
01
w=L1Jm@ (15)
The Dirac plane waves satisfy |y 442 = 1, and thus
we have (g}’ is the Minkowski metric)
gis = 87 (16)

for all four plane wave solutions.

We write down y, and ¢4 for the four plane wave
solutions’ {where N = (E + m[2m)% and exp (ip,x’) =
exp [i(Et — p+x)}}. For the first plane wave solution
we have

= N1+ )eJm{
o ( E+m

¢1 — (pl - ip?) eipia;l

E+m
, 17
Xz = N(——————p‘ + lpz)e"“”“‘, )
E4m
D3 ipsict
= N{1 — ——— e,
¢ ( E 4 m)
For the second solution we have
X — N(pl lp%) ——'mei,
E4+m
Ps Dt
= (1 2o
# ( E4m
(18)
Ps _ipit
= N{1 ~ einis,
x ( E + m)
ot ipz) -
= — N{*=—-25) 2",
b, (E+m
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For the third solution we have

J ) ipizt
{1 4B
X1 ( E+4m

PL— iPs\ _ipiat
= — N{ &2 etp,:c,
# (E+m)

ptips ipiat
j/z_N(E-{-m)e ’

Ps it
= —~N{l — —=—|7"%
#: ( E+m)

For the fourth solution we have

Dy = iPs\ ipiai
= N[Z—2) 7,
2 (E+m)

(19)

D3 -
= N ]+__—._ ¥ 8
b ( e L

(20)

From y, and ¢, we construct /;, n;, m;, and r,, by
means of (1). We shall work in the Lorentz frame
where p; = p, = 0 (our equations are all covariant
under Lorentz transformations, and this frame
makes things simpler). From (5) we then obtain for
the nonvanishing I'j, the following. For the first
solution (17) we get

Fés = "_2p3, P;o = 2E,

T} = 2p,, I'jo = —2E. (21
For the second solution (18) we get

I35 = 2ps, Iy = —2E,

I, = ~2p,, I} =2E. (22)

For the third solution (19), we get the same as (22)
and, for the fourth solution (20), we get the same as
(21). These constant I'%, correspond to /;, n,,; m,, and
m, that have an x dependence of the type exp (£2ip,x).
We find that (7) is identically satisfied by (21) and
22).
Associated with (17) we have these nonvanishing
e”
e', = cos (2pix’), €'y = sin 2px’),

e% = cos (2p;xY), €4

—sin (2p;x%),
- p3/m’

—ps/m.

(23)

& = Elm, &%

&% = E[m, e%

From (18) we get

ey = —cos (2p;xY), el = sin (2p,x?),

922 = COS§ (Zpixi), 821 = sin (ZPixi),

€% = —E[m, &% = —p,/m, (24)
¢’ = E/m, e% = py/m.
From (19) we get
e’y = —cos (2px’), €', = sin (2p;x?),
€’y = —cos (2px’), €% = —sin (2px’),
% = E/m, e’ = —py/m, (25)
e’ = E/m, &% = —py/m.
From (20) we get
e'y = cos 2p,x"),  e', = sin 2pxY),
&% = —cos (2p,X"), €% = sin 2pxY),
e, = —E/m, e’y = —pyfm, 26)
e’ = E/m, €% = py/m.

We have shown that the Eq. (7) does admit Dirac
plane waves as solutions.
V. NONDIRAC PLANE WAVES
It is an easy matter to show that not all the plane
wave solutions to (0 = g“9,9,)

27

Deai = ’—m2eai
give a solution to (7) and (6). We can see this, for
example, by taking (no summation on 7 index)

& = 0¥(guc)’, (28)
where ¢, = (1, =1, ~1, —1).* From (4), this gives
a diagonal g;;,

8i = 85?)&':* (29)
From (27) we get

O(gue)t = —mi(gie)t. (30)
A plane wave solution to (30) may be taken as
g = —atetP, g = et
gon = —D%P, gy = d?e?vie’ €D

where a, b, ¢, and d are constants, and it is understood
that we want the }‘eal part of (31). From (28) and (5)
we get

; 0In (gﬁfa)&

Iy = &; " (32)
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Inserting this in the field equation (7), we get (no
summation over j or k)

din (gn‘jylf _ d1n (gjiej)% din (gkkek)%
oxoxt ox* oxt

Using (31), we see that (33) is not satisfied since the
left-hand side is zero, but the right-hand side is not.

Thus, the Dirac plane waves have a special signifi-
cance as compared to other plane waves, as far as (7)
is concerned.

(33)

VL. THE EQUATION A%, =0

It has been our approach, as set forth in our
previous papers, to consider only linear coordinate
transformations, and, thus, I}, is a tensor function.
Our use of the term covariant derivatives is meant as
an abbreviation for certain combinations of terms that
keep on recurring and which have the same formal
structure as the covariant derivatives in generally
covariant theories. In this section, we point out that
our results have greater generality than this.

From (16), we see that g,; = g\, where g\ is the

Minkowski metric. Thus, all the Christoffels are zero.
We may now form the object (Ricci coefficients),

Aijk = Fi’k - { .l } (34)
Jk

A} is a tensor under general coordinate transforma-

tions.In our coordinate system A}, = I'},. Thus, in the

coordinate system with which we are working, we

have that’

Ajy =0 (35)

is satisfied. Since this is a tensor equation, it therefore
holds in all coordinate systems.

Thus, we conclude that Dirac plane waves also
satisfy the equation A}, =0, which is covariant
under general coordinate transformations.
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It is suggested that a “physical’’ definition of a singularity in a space-time manifold might be that
it is a point where the relative accelerations of nearby timelike geodesics become infinite. Along an
arbitrary timelike geodesic in Schwarzschild space, we construct an orthonormal tetrad of 4-vectors
which are used to define “elevator coordinates’” in a neighborhood of the geodesic. We use these co-
ordinates to determine the tidal gravitational accelerations near the geodesic, and we point out that
these accelerations are finite (and continuous) at r = 2m, the ‘“Schwarzschild surface,” although they

are unbounded as r approaches 0.

1. INTRODUCTION

There has been considerable discussion about the
definition of a singularity in general relativity.*:? No
one proposal is as yet accepted by everyone, perhaps
because they aim at different notions. One possible
“physical” definition of a singularity is obtained by
considering a timelike geodesic (freely falling observer)
passing through a given point P on the space-time
manifold. While in the neighborhood of the point P,
we imagine the observer measuring the accelerations
(relative to himself) of nearby points also in free fail.
If these accelerations become infinite at P, we may
say that the manifold is singular there, at least in the
sense that a real physical observer (larger than a
point) passing through P will be torn completely
apart.®

We will now consider this approach to singularities
for the Schwarzschild solution to the Einstein field
equations. (The Schwarzschild solution is particularly
appropriate since the question of singularities probably
originated with it. It is well known* that, although a
component of the metric tensor becomes infinite at the
“Schwarzschild surface,” r = 2m, this surface is not a
genuine singularity of the manifold, but only arises
due to a poor choice of coordinates. Kruskal,® as well
as others,? have introduced new coordinate systems
which eliminate this apparent singularity.) For all
timelike geodesics a natural coordinate system is
constructed, used by an observer moving along that
geodesic.®® We then compute the components of
Riemann’s tensor in this coordinate system, which are
related to the relative accelerations of nearby points in
free fall. We find, as expected from the work of
Kruskal,® that these accelerations remain finite at
r = 2m, independently of how it is approached, but
do become infinite at r = 0. In addition to the
viewpoint about singularities expressed by these
results, there are possible applications to gravitational
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collapse and small neutron stars. (Both subjects occur
frequently in current literature.)

2. AN ORTHONORMAL TETRAD CARRIED
ALONG BY AN ARBITRARY
OBSERVER

We use the standard Schwarzschild solution to the
Einstein equations in free space, which is static and
spherically symmetric, with the line element

(ds)® = g, x"x"
= (1 — 2m/r)™(dr)* + r*[(d6) + sin® O(d$)*]
— (1 = 2m/r)(dr)?, 2.1
in Schwarzschild coordinates,” where m is the mass
of the central body which we take to have negligible

size. The equations for a timelike geodesic may be
written as

2
4

x* 4 { A}x“’x” =0, (2.2)
where the prime stands for the total derivative with
respect to proper time 7, with (dr)? = —(ds)?, which
is positive for a timelike curve. The solution to these
equations always lies in a single 3-plane, and the
coordinates may be chosen in such a way that this 3-
plane is specified by the requirement 6 = 4. The
general solution is then well known, having been
worked out first by Hagihara® in 1931. The orbit
equation for a test particle following a timelike
geodesic is given by (for nonradial orbits)

r=2m[{v[}(¢ + I}, (2.3)
v(y) = py) + 1, (2.4)

where 6 is a constant of integration fixing the origin
of ¢. The Weierstrass elliptic function® f(y) is a
doubly periodic, meromorphic function with a
double pole at p = 0 4 2nw + 2mo’, where » and
o’ are the two periods and » and m are any integers.
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[We fix the phase of the periods by the requirement
Im (w'[w) > 0.] The other variables, ¢ and =, are
determined by the equations

¢' = Bfr? = 2m|pr?, (2.52)

t' = A[(1 — 2m]r), (2.5b)
where A and B are constants of integration given by
the total energy per unit mass of our test particle and
the angular momentum per unit mass, respectively,
with § =2m/B as a dimensionless parameter.'®
Depending on the values of 4 and B, there are various
types of solutions corresponding to different types of
orbits.® There are no orbits which approach the center
nearer than r = 2m and then return to large distances
without first going through the center, r = 0. We will
therefore be mostly interested in those initial con-
ditions (values of 4 and B) which allow our observer
to penetrate closer than r = 2m, having originated at
some fairly large distance.

We imagine that our observer (traveling along a
particular timelike geodesic) carries with him a clock,
measuring his proper time, and has the ability to
make local measurements. We then can construct!* a
system of “elevator coordinates” y*, such that y* = 7,
the proper time of the observer. We define these
coordinates by the use of a standard orthonormal
tetrad of vectors with components V*,,, where the
index («) picks out the four different vectors. We
carry these vectors (which may be thought of as
the “measuring rods and clock™ of the observer)
along the geodesic by parallel transport. We may then,
at least in a neighborhood of the geodesic, define a
natural coordinate system y*—our elevator coordi-
nates—for the observer by the equations

Vi MV oy ()"

(2.6)
and 7 = y*, where the x*(7), the tetrad components
V¥ ., » and the Christoffel symbols are to be evaluated
on the geodesic as functions of 7. Therefore, we have
thatn

e 1
:w=wm+vamy—ghﬁ}

a#
= = vl + 00"

2 2.7

and

up = g + OLO")], (28)
where we indicate tensors taken with respect to the
elevator coordinates by an overbar. It is clear that the
geodesic itself is given by the coordinates y* =
0,0, 0, 7).

The V*#,, are determined by the equations’!

V¥ + { ! }, Vipx* =0,

A (2.9)

subject to the constraints
gquu(a)Vv(/;) =17, and V¥, = X" (2.10)

The general solution to these equations is given in the
Appendix. We shall be interested here only in those
solutions that satisfy certain initial conditions appro-
priate to the case under consideration.

We desire to study the observations made by a
freely falling observer falling toward r = 0 (the center
of gravitational attraction) from a considerable
distance away. This requires® 4% < 1 (i.e., originally
the kinetic energy was less than the absolute value of
the potential energy) and that the discriminant A
of the elliptic function be negative. This implies? that
w = o'* is complex; it is therefore most convenient
to work with @, = w + «’, which is real. To obtain
dr{dr < 0, we must let y, the argument of the elliptic
function, increase from —w, to 0 along the real axis.
During this motion, r decreases from a maximum
value r, > 2m (which may be infinite) to 0, mono-
tonically. We may therefore construct initial condi-
tions on the V#,, as if they were “measuring rods and
clock” in an essentially flat space. Suitable initial
conditions would be to have each of ¥y, through ¥4
point in different spatial directions and Vi, to be
timelike. To maintain the orthonormality properties,
therefore, we may take

Vi (¢ = 0) = (1 — )*(1, 0,0, 0),

Vi (¢ = 0) = (2,/2m)(0, 1,0, 0),

Vi (b = 0) = v,(1 — 0240, 0, 4/2m, 1/B),
Vio (¢ = 0) = (0,0, v/2mB, A/(1 — vy)),

2.11)

where v, = 2m/r, is the original value of v (at ¢ = 0).
With these initial conditions we have (see the Appen-
dix)

V) = [ + pH2p1(—vv’ sin &
+ 248%cos &, 0, (v% + BB (v/m) sin &,
B(24vsin & — v’ cos &)/(1 — v)),
Var(y) = 0, v/2m, 0, 0),
V() = [(0* + B }2B](— v’ cos & — 2482 sin £,
0, (v/m)(v* + % cos &,
B(2Av cos & + v sin &)/(1 — v)),

Vio(p) = 2B)(=v", 0, v%m, 248/(1 —v)),  (2.12)

where & is a real-valued function of y which runs
from 0 to some maximum, dependent on the initial

conditions, as the particle moves fromr, to 0, and v’ =
dv/dy. (See the Appendix for more details.)
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3. TIDAL GRAVITATIONAL ACCELERATIONS  convergence) of the world lines of nearby particles
SEEN BY AN ARBITRARY OBSERVER and the world line of our observer. It is proposed here

The observer, who is at the center of the elevator, that there is no “singularity” in a space-time unless
finds that there is an apparent force acting on nearby the relative accelerations of nearby particles, all
particles; that is, nearby particles have nonzero traveling on timelike geodesics, becomes infinite. (In
accelerations relative to the center of the elevator. Ifa  pictorial terms, the observer, who, of course, is
nearby particle has the elevator coordinates (y*, r), larger than a point, is torn asunder at a singularity.)

then it is well known?? that We must then merely calculate Riemann’s tensor in
» the elevator coordinate system. Using Eq. (2.8), we
d___2 yalr — Ra4b4]ryb, (3.1) have that _ ) . . ,
T Raﬂ)vélr = Ruvqi.V(a)V(ﬁ)V(v)V(é)lr (3'2)
where the R%,, are components of Riemann’s tensor and
in the elevator coordinate system. Intuitively, our R%.5l, = 1" Repy,- (3.3)

observer will interpret this relative acceleration as a
“force” acting on nearby particles. Whatever the It is a lengthy but straightforward task to determine
interpretation, however, there will be a divergence (or R%4,51* We need only the components

3(1 + 1%/B?) cos? £ — 1, 0, —3(1 + t*/B) sin & cos &
3
(Re,y,) = 8—1:;1-2 0, —1 = 32, 0 ) (3.4)
~3(1 4 v?/6%) sin & cos &, 0, 3(1 + v¥p*)sin? & ~ 1

We recall that v = 2m/r so that 0 < v, < v < co. This implies that

Clearly every factor in R%,, is well behaved at all — 0

finite values of v, except possibly & = &[p(v)]. But & mR 4b4lf = a—y?; F {,- (4.2)
is always real, so that |sin &| and |cos &] stay between .

0 and 1. We see, then, that Riemann’s tensor in We have constructed elevator coordinates for an

elevator coordinates is finite for all values of r, except observer on an arbitrary timelike geodesic and
r =0 (v = ), forany timelike geodesic. In particular determined the form of Riemann’s tensor in those
at r = 2m (v = 1), £[y(1)] is well defined, real, and coordinates. We use the “apparent for(.:e” argum.ent
finite, so that, as our observer passes r = 2m on his above and our notion that a singularity in space-time
way to the center, he notices no sudden change in the ~©3US¢S infinite accelerations of nearby particles
relative accelerations of particles near him. It is also Telative to a timelike observer passing through the
worthwhile to point out that the eigenvalues of singularity. It is seen that there are no singular points

Re,,, (considered as a 3 x 3 matrix) are just v%(2 + in Schwarzschild space except the origin. This is, of
302/8%)/8m?, —uv3(1 + 30%/f%)/8m?, and —v®/8m?, in- COUISS, well known, but the above proof by means of

dependent of the angle &, an arbitrary timelike geodesic (physical observer) is
new. This proof also is meant as an example of a
method for detecting “physical singularities” in other

4. CONCLUSION space-times than this one.

Atr =0, £(0) is a finite real number (see the Ap-
pendix), while v becomes infinite, so that the relative
accelerations become infinite and any physical (non-
point) particle is torn completely asunder. Therefore
it seems questionable to attempt to identify the two

In a classical analysis, we may replace the relative
accelerations due to tidal gravitational forces by
‘““‘apparent forces.” Then!?

mRo,)° = m _d_22 ¥ piec«?s of Kruskal space in su:cl} a way that material
dr particles rebound from the origin.1*
= F%(y) — F%0) Additional aspects of the Schwarzschild space near

r = 0 are being studied, particularly the question of
d the physical interpretation of the various known

—_ y 2 Fo €2
=7 2y° F* 4 010"} @1 extensions of the manifold. Extensions of this method
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to other solutions of the Einstein equations are also
being studied.

APPENDIX: SOLUTION OF THE TETRAD
EQUATIONS

With the usual values for the Christéffel symbols in
Schwarzschild coordinates,'® Eq. (2.9) becomes

/o — (0%4m)(1 — o)V (g’

— (0]B)1 — )V + (A[4m)o*Vy =0, (Al)
Via + (7[0Vi = 0, (A2)
Vo + (0U4m )V, + 2mVir =0,  (A3)
Vio + (0°4m)(1 — o)V iy

+ (AvYdm)(1 — v)2V{,, = O. (A4)
Equation (A2) has the immediate solution
Via(p) = 2m) ™D v (y). (AS)

Now we use the orthonormality conditions [Eq.
(2.10)] to obtain (remembering that Latin indices
vary from 1 to 3)

AV =BViy + (L — o) Wiyr'.  (A6)

Combining this with Egs. (A1) and (A3), we obtain
[via Eq. (2.53)]

Vie = @A = 302V g = (1 = 30DV i)’
(A7)
and
(V) = —-(uz/Zmﬂ)V%a; = —Vlmqs': (A8)
from which [using Eq. (2.4)] we have Lamé’s equation
[with x = rV}, and v = }(¢ + 0)]:
2

d

PR [6(y) — 2]x.
The solutions are well known'; they are the Lamé
functions A;(y) and A,(y), which can be written in
terms of functions related to the Weierstrass elliptic
function . Let {(y) and o(y) be defined by the
equations®

Uy) = v + f:du[u*z — ),

(A9)

(A10)

o) = pexp ( [tz - ). (A

The functions { and ¢ are quasiperiodic, and { is a
meromorphic function with a single pole at every
period point, while ¢ is an entire function which
vanishes at every period point. Then linearly inde-
pendent solutions of Lamé’s equation are

o(y + a)o(y + b)o™ (,p)ew[cmmwn,

where p(a) + (b)) = —% and H'(a) + £'(b) = 0.
Solutions for these constraint equations in terms of 4
and g are given by

POy = - —if, ©'(b)=—-24p,

a = —b¥*,

(A12)

It is convenient to normalize these functions so that

b - b* —24p Im [L(b
My) = A;(W*) = G(w‘:_(b))lg(:;(w) )e 2ip Im (L)

(A13)

From the standard ‘‘addition theorem’ for the ¢
functions® and Egs. (2.4), (All), and (A12), we have
that

APAL(y) = o0’ — 2iAf° (A14)
and

A(p)As(y) = v*(y) + % (A15)
From Eqs. (A6), (A8), (A9), and (Al4), we can

complete the orthonormal tetrad [along with Eq.
(AS)]:
Vi = =30 + ) o' (Cip Ay + Cipe)
— 24 (CiaAy — Cah)],
Vi = (Cay + CipyAp)(v/2m),
Via = (1 — 0)(® + 917
X [2A0(CiyA; + CipAo)
- iUI(C(a)AI - C{a)A2n~
The nine constants in Egs. (AS5) and (Al6) are still
subject to the orthonormality conditions [Eq. (2.10)].
These imply the following relations between them
{only six of which are independent):
- (D(a))2 = 4;32C(,,,C_(a) s
—DDyy = 284CiyCiy + CCa)» a # b.
(A17)

Since we are considering only real y, we can write

A(w) = Ad(y) = [¥(y) + APReBW-1 (A18)
where

(A16)

=) _ o(y + b)o(y — b*) e W ImlE®] (A1)
a(y + b*)o(yp — b)
and

Ix=mIm(b) — 0, Im [{(B)], 7, = {wy). (A20)
This choice of the constant phase y and our initial
conditions makes the final answer depend only on
£(y), which is real for real y and is normalized so that
&(—w,) = 0 and £(0) & x. [It should be pointed out
that b is always complex and Im (b) is not equal to a
multiple of a period, so that o(y £ &) can never
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vanish for real %.] Since v, v, and V¥, must all be real,
we have that the D, are real and Cy, = Cf .
Fitting to our initial conditions [Eq. (2.9)], we find

Dy = 03, 2fCi =2iBCqyy = €% Cy =0.
(A21)

Insertion of these values in Eq. (Al6) yields the
desired tetrad solutions given in Eq. (2.12).
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The S + § equivalent theories describing a free massive field with half-integer spin S in the limit
m — 0 are investigated. It is shown that for m = 0 they are not equivalent and describe different massless

particles, with helicities ¥ = +4, +%,- -

, 8. The inequivalence is caused by the possibility of

having different gauge transformations for different massless spinor-tensors G**'%)

1. INTRODUCTION

In the previous paper! it was shown that if we put
in the S + 1 equivalent covariant formulations of the
theory of a free massive particle with integer spin® S,
the value of mass m equal to zero, all the formulations
describe different S + | massless particles. This
result is caused by the fact that, in the case m =0,
besides the notion of Poincaré invariance, one can
also introduce the gauge transformations that do
not change the field equations. Inequivalent formula-
tions obtained after putting m = 0 are caused by

g [rv]A”

different possibilities of choice of the gauge trans-
formations.

The case of arbitrary half-integer spin S = %, %, - -~
is considered in this note. We use S + } equivalent
formulations of the theory of amassive particle with
half-integer spin S, which were first introduced by the
author. This set of S + § equivalent equations are
given in Sec. 2. As the fundamental fields we use the
spinor-tensors Gf,’;:f?vjk[uml,,m]_,[us_;,,S_%]A. Any such
spinor—tensor is symmetric with respect to any
permutations o, <> o; and {u,v,] <> [x,v,] and is
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tions obtained after putting m = 0 are caused by

g [rv]A”

different possibilities of choice of the gauge trans-
formations.

The case of arbitrary half-integer spin S = %, %, - -~
is considered in this note. We use S + } equivalent
formulations of the theory of amassive particle with
half-integer spin S, which were first introduced by the
author. This set of S + § equivalent equations are
given in Sec. 2. As the fundamental fields we use the
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spinor—tensor is symmetric with respect to any
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antisymmetric with respect to the indices in the square
bracket. Index A4 has four values and, using Weyl’s
notation, we get

(&,8)
G"'U"'[M"]l

G(k,S) G(k,S)
G(k,S)[ —_ ( ~~-a--~[uv]a) — ceegee[pv]2 (1.1)
o lpvld = (r.8) - (%,8) 4 :
G-nam[yv]g G---a"'[uv]i
(%,8)
G v

i.e., with respect to the spinor indices, G'**5 trans-
forms as Dirac’s 4-spinor.

The main result is obtained in Sec. 3, where the case
m = 0 is investigated and the gauge transformations
are defined. It is shown explicitly that in the massless
case we are led to S + § different theories. We see,
therefore, that the result obtained by Ogievetski and
Polubarinov? for the spin-1 case can be generalized
to any finite-dimensional irreducible representation of
the Lorentz group.

2. ARBITRARY HALF-INTEGER SPIN: MASSIVE
CASE, m =0

In this section we show how to generalize the
Rarita-Schwinger formalism to the case when, as the
fundamental field, the spinor-tensors G.(_’ft;s“’,[wm are
used.

The field G+ describing massive particle with spin
S should satisfy the Dirac equation

(i0,y" + m)G*S) ) = (2.1
and the following six subsidiary conditions:
aO'G(k;,S)[uv] =y, (2.2)
G*S L, =0, (2.3)
yGES =0, (2.4)
&,8)
G““’[ap]”’[uv] = 0, (25)
Y'Yy GES e = 0. (2.6a)

Because Eq. (2.6a) can be written only for k < § — 2
if k =8 — 2, we use the following equation:
"y"GES L, = 0. (2.6b)
We shall now discuss the set of Eqs. (2.1)-(2.6)
in the rest system with the spacelike components of the
4-momentum vector of the particles equal to zero;
i.e., we assume that p = (0,0, 0, m). We hold that
(2.1)~(2.4) can be written in momentum space in our
particular coordinate system as follows:

GES) (D) = 0, (2.7)
G¥a(p) = 0, (2.8)
G‘('I‘E:;S"')-[Ov]a(p) = 0’ (29)

G-(-Ififst?[uvjz(P) - iG-(o]f’z'?[uv]z(P) + G~('k'33§~)'[uv]l(p) =0,
G S amn (@) + iGES (D) + G*5 . a(p) = 0.
(2.10)

From the Eq. (2.5) we obtain

Gf-k-é'g).[lzn(P) - G-(fi‘g?[la]z(l’) + in-k"‘-S-)-[m]z(P) =0,
ch-'zﬁ)-[lzp(P) + G~('k-'1§{[13]1(1’) + in?{’z'?)-[la]l(P) = 0.
(2.11)
Equations (2.6a) and (2.6b) give, for arbitrary k,

G-('k-ﬁ{[za]l(P) - iG'(-k-Z;'gl[ls]JP) - G~(-k~’a§-)-[1212(l’) =0,
Gf-k-l;-g-)-ma]z(l’) + in-k-f-)-[la]z(P) + Gf-k-f-)-[lz]ﬁp) =0.
(2.12)
On the basis of the relations (2.7)-(2.12), one can
easily see that the set of Eqgs. (2.1)-(2.6) has, for
po=m, only 28 + 1 linearly independent solutions

that describe massive particle with a definite half-
integer spin S.

3. ARBITRARY HALF-INTEGER SPIN: MASS-
LESS CASE, m =0

Let us put m = 0 in Egs. (2.1)-(2.6). We obtain for
the massless case the following set of equations of
motion:

0,7°GES =0, 3.1)
0°G%S) =0, (3.2)
o*GES =0, (3.3)
PG =0, (3.4)
G i =0, (3.5)
Py GES e = 0, (3.62)
and fork = S — 2,
0y"GES) L = 0. (3.6b)

Choosing p = (|p[, 0,0, [p|), from (3.1)-(3.4) we
obtain

GESn(p) = —G%S) L 1i(p),

G-("fﬁ{[#v]z(l’) = G-(‘]f’%%[uv]é(P), (3.7

foég?[uv]A(P) = G-(~k~b‘~s?[uv]A(p)’ (3.8)
and G2 na(p) = GE 2 014(D), (3.9)

G~(-k~’1§)-[uv]l(p) = _ich'yZA?)-[yv]l(p)’

G on(p) = iIG%S (D). (3.10)

Taking into account (3.8) and (3.9), Eq. (3.5) may be
reduced to the following form:

GES P =0, i=1,2, (3.11)
from which it follows that
GES (P =0, i=1,2, (3.12)
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and
G-(-’fiﬁ?[la]A(P) + G-(-k-’z'?![zslA(P) = 0. (3.13)

Finally, using (3.8) and (3.9), we see that Eq. (3.6a)
gives

PG (P =0 i=1,2, (314
or
G'("‘E;'S-)'[12][12]A(p) =0, (3.15)
G.(.'f;,‘.g.).[m[la]l(l)) = _iG-('k:’aA?)-[12][23]1(p)a
G-(!‘f'v‘?)-[lz][l3]2(p) = iGFE;A?)‘[l‘:‘.][%]Z(p)- (3.16)

Equation (3.6b) is satisfied identically.
From these considerations we see that the following
components of the field G*+9 are linearly independent :

G:(x{c-’-g[)lz]us}--[13]«(1’)’ (3.17)
Gf(i"r',"g%?'k+10k+1]‘"[‘rg-%qs—-!‘]d(P)5 [rq] = [13], [12]; (3-18)
and

GES) srpse(P), o= 1,3. (3.19)

Other components are identically equal to zero or can
be expressed as linear combinations of the components
(3.17)-(3.19). The components (3.17)—(3.19) are
characterized by different helicities and describe
several massless particles; some of them, however, are
nonphysical, because they can be eliminated by means
of the gauge transformations, leaving the field
equations invariant. One can introduce the gauge
transformations in such a way that only two com-
ponents with defined helicity remain. These gauge
transformations are essentially different for the case
k=S—1% and k< S—1 In the first case (if
k=8 — 1, then G'S™+8) = G~D), they are defined
as follows:

(s-% 8-4 _ ~s-h (s-%
Gﬂl"'ﬂs—%ﬁ Go.l...as_;? = Usas-} + 6G01"'¢S~}’
(8- (§~3)
0Gygg-y = > a,iA,,l...,,j...,S_g, (3.20)
perm
(cic;)
where

a,,yﬂ A‘f"%’

LY 2

1 =0,

PASH =0, (3.21)
AT =0

Because in the rest system

0GR 1,a(P) = 7 1P gy 1n,a(P)s (322)
= e
we see that only two components G5 3)(p) are gauge
invariant and describe the massless particle with
helicity 3¢ = +8.
In the second case (k < § — }), the spinor—tensor
ABS s used as the gauged field. Now the gauge

transformation has the form

(%,8) (x,8)’ — &8 (k
G--'a'“[uv] g G...a...[uv] = G""’"'[I“'] + (sG

5G(k’S)

ararluryrveia]-[us-3vs—11

= z (-1)"6;1“1 ces aus_%A (8—2)

1 ORVE4L T VS—
perm

,S)
g [uvls

(3.23)

where Y .., denotes sum over all permutations of
pairs ¥,., <> u,,; and n describes the number of such
permutations. The field A®H must satisfy the
following conditions:

I PASE =0, (3.24)
ABh =, (3.25)

P 3 (DB Dus B ycrmprisny = O
perm (326)

Equations (3.24) and (3.25) are identical with (3.1)
and (3.2); however, Eq. (3.26) gives

(s-h — __iAls=h
Adl"‘dk—11i1;+1“-isv},l(p) - —lAal"'dk—12i;,-+1'“is—é,l(p)!

(s-h — A 8=h
Adx"'dk—llik+1'"1's—§,2(p) - IA01-~~o';,—122'7_»+-1"~1's~-,§,2(p)’

i=1,2. (3.27)

With respect to the gauge transformations defined in
such a way, only the following two components with
helicity € = 4 (S — k — ) are gauge invariant:

(%,8)
G3~~~3[12][13]~--[13]1(P)'
Because

(x,8) — [n|S—t=} A (5=
6601"'65{’5“13]--~[2's—13](p) = lpl , Auln-akik“-ufs-;(p),

(3.28)

the remaining components (3.18) and (3.19) may be
eliminated by suitable choice of the gauge function
AS™H_ 1t has been explicitly demonstrated, therefore,
that the gauge transformations are able to restrict the
number of nonvanishing components to a pair with
two opposite helicities.

4. CONCLUSIONS

One can summarize our results in the following three
points:

(i) There exist S + % equivalent theories describing
massive particles with half-integer spin S. In these
theories the spinor-tensors G*.5) are used as the
fundamental fields.

(ii) In the case m = 0, one can introduce in these
theories the gauge transformations in such a way that
they describe S + % different massless particles with
helicities X = +4, +3,---, £S.

(iii) One can conclude that there exist an infinite
number of ways of introducing the free theory of
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massless particles with given helicity J¢ by means of

the spinor-tensors Gfrfe‘};e . and

(r—J-1,7)
al"'ﬂr—.](:~1[u1_

G

JCVT_JCW[M—}W-H

wherer =X + 1, 4+ 2,---.

Comparing these three statements with the results
obtained in Ref. 1, one can say that there exists a
similarity between theories of the particles with integer
spin and half-integer spin. Such similarity is clear on
the grounds of the representation theory of the Lorentz
group and the wavefunction formalisms for higher-
spin particles.
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Our investigations in Ref. 1 and in this paper are
restricted only to the classical field equations. The
limit 7 = 0 in quantum theory is much more compli-
cated because of the problem of spurious divergences,
coming from the factors in the Green’s functions n—2*,
These problems will be studied in subsequent work.
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The Wigner coefficients for the faithful unitary representations of the 2-dimensional Euclidean group
are derived from two identities involving Bessel functions. Since the muitiplicity in the decomposition
of a direct product is two, we find two sets of coefficients which are real and mutually orthogonal and
symmetric and antisymmetric, respectively, under interchange of constituent representations. Properties
of the coefficients at the ends of the decomposition spectrum are discussed.

I. INTRODUCTION

There is increasing interest in the role which the
2-dimensional Euclidean group E(2), the group of
rotations and translations in the plane, plays in
elementary particle physics. As the isomorph of the
little group for lightlike particles in the Wigner
classification of irreducible representations of the
Poincaré group, its faithful representations, with
infinite spin spectrum? (“indefinite helicity”), do not
appear to be realized as free particles in nature.
However, in the formalism of Toller,® the amplitude
for the case of zero momentum transfer square (as
distinct from null momentum transfer) should be
expansible in terms of representation functions of
E(2). A study of the E(2) representations seems essen-
tial for an appreciation of the transition from time-
like to spacelike momentum transfer. The group
E(2) also occurs naturally in the study of the infinite-
momentum frame limit of kinematics.

In order to gain a deeper understanding of the
nature of the representations of E(2), we here derive

the Wigner or generalized Clebsch-Gordan coeffi-
cients. These may be deduced from some well-known
identities for Bessel functions, the main difficulty
being caused by the multiplicity of irreducible repre-
sentations in the direct product. Two sets of coeffi-
cients which are orthogonal and can be chosen to be
real are required.

II. REPRESENTATIONS OF E(2) AND BESSEL
FUNCTIONS
The faithful unitary irreducible representations of
E(2) may be realized over a discrete basis and written
in the form?

DX (b, §) = et ntAbin—mbjyn-—my  (bX), (1)

where ¢ is the angle of rotation in the plane, b is the
subsequent displacement vector with b = |b| and
B = arg (b), X? (where X > 0) is the value of the
Casimir operator specifying the irreducible repre-
sentation, A =0(3) for single- (double-) valued
representations, m and n are integers running from
— o0 to + o0, and J,, is the Bessel function of order n.
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The Clebsch-Gordan series for E(2) has been
obtained by Mackey®: In the decomposition of the
direct product of two representations specified by X'
and X", each representation in the range |X' — X”"|,
(X' + X") appears twice. An extra parameter w =
1, 2 is therefore introduced into the definition of the
Wigner coefficients to distinguish between functions
transforming under similar representations. If the
basis functions of representations are realized over
some space H = {h}, the defining relations for the
Wigner coefficients in terms of basis functions may
be written as
WX (RYEE (W)

—_ o XAX'A X "A" wXA. XN AX"A

SISy 1), @
where WX'4" and WoX4X'2'X2" are, respectively, the
single-particle and 2-particle irreducible basis func-
tions; states within a given basis are completely
specified by the discrete parameter 7.

In terms of the representations themselves, the
standard definition is

D3 A8 Do (g)

-33333e

X}.X AA* X/l wXﬂ.A/lA}
wm mr . T Do (8)cy

3

where g is a group element. ®

In these expressions, the integral over representa-

tion space, i.e., the Plancherel measure for the group
E(2), is given by

$=fXdX=de,
X

W = 1X?
where W is actually the variable® for which orthogo-
nality holds in the conventional form, because of the
following integral relation for Bessel functions of a
given integer order:

f wa,,(bX)J,,(bX’) db
=XWX-X)=06W-—-W), (4

where W' = (X"
The orthogonality and completeness relations for
the Wigner coefficients are

Zz 2 $ cmX}.X AX Y miﬂf ).X ATk __ 6n',ﬁ’én”,ﬁ”
(5)
and

zzca)Xi.XlX}. leXi.XA *
) 7 n

= 80,500.40;,10(W — W) (6)

if (X7) appears in the decomposition of the product of
the representations (X’A") and (X"2").
These imply the converse relation to (3), viz.,

Z z z z c&);gl;n\',’z';l\'”"i"c w;\’zqf}"/l';\g"/l" *

m’ m” n’ n”
XA XA
x D ,n‘(g)Dm",n”(g)

= D7(2)05,,91:0(W — W) ()

if (X4) appears in the product of (X’'A’) and (X"1"),
and also the converse relation to (2), which may be
taken as defining the 2-particle irreducible basis
functions

IP'wX}.:X'l’X”l”(hl h//)
=3 3 IR BT TR, (9)
n’ n” :
The identification of the Wigner coefficients of
E(2) is facilitated by two formulas involving Bessel
functions. A formula of Dixon and Ferrar [Ref. 7,
p. 205, Eq. (6.41)], for the case of integer-order
Bessel functions, may be written in the form

I (XMW (X7)
=J. @(—1)'"'exp ifn'a + (n" + n" W, 10 (X),
0o
)

where

X=4+[(X)P2+ (X2 —-2X'X"cosa]t (10)

and y is defined as the angle opposite X’ in the tri-
angle formed by X, X’, and X" (and so « is the angle
between X’ and X”). This holds for all integers n" and
n" and all positive X’ and X”. The case X' = X" is
Neumann’s formula [Ref. 7, p. 205, Eq. (7.11)].

The Graf addition formula for Bessel functions of
integer order, given by Watson,® may be written in
the form®

2 (=D expi(n'o 4 ny)J (X)X,
(11)

Ju(X) =

with X again given by (10).
The geometrical meaning of the symbols is made
clear by Fig. 1 (cf. Watson®). Note that
(XN . X/e—ia)/X — eiy
and

XdX = X/’X" sin o doo = 24 do,

where the area of the triangle formed by X, X’, and
X"is
A=3X'X"sina.
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Fic. 1. Geometrical significance
of the symbols used in the text.

II1. DETERMINATION OF THE WIGNER
COEFFICIENTS

We shall utilize the fact that a muitiple of the
elements of a fixed row of a representation forms
(under right multiplication by a group element) a
basis for that representation. Equation (1) will
therefore be used to define basis functions.

For single-particle basis functions, we choose a row
m = M, where M is an arbitrary integer which remains
fixed for the rest of the discussion. Thus we define!’

Y 4(4,b)
(877) %DIVI,n (b, ¢)
— (8nz)'*}e'“"'“'”’e"(”'“M’”(i)(M'""Jn,_M(bX'),

(12)

where X’ specifies the representation under which the
function transforms irreducibly, A’ specifies the
valuedness, and n’ 4 4’ is the helicity component
which labels the states within the basis. [Compare
this with the case of the rotation group,'* where the
basis functions Y,,(0, ) may be obtained from the
representation functions D!  («, 0, #) by choosing
the row m =0 and introducing an appropriate
normalization factor.] These basis functions are
normalized over the space of ¢, 8, and b, with ¢
going from 0 to 4« to give orthogonality when the
case of double-valued representations is included.
Equation (4) is used to obtain

f d¢f dﬂf b dbFE ¥ (b, BYTX ¥ (4, b)*

= Oy b 1o O(W’ — W) (13)
The ““2-particle” basis functions defined by Eq. (8)
and depending on two independent sets of variables
will correspondingly contain a normalization factor
(8=

Now, using the real part of (9), we find

WE (g, BT (4, b)
M+ X" )X dX
“Jl 2md

X cos [(n" — M)a + (n' 4+ n” — 2M)y]
X (8t Le i T A il —2Dp

X DT o (BX), (14)

Apparently, what we are seeing here is part of the
Clebsch-Gordan decomposition corresponding to
Eq. (2) for the particular case h' = h" = (¢, b). The
Wigner coefficients depend only on representation
and basis labels and are, of course, independent of
the particular variables over which the basis functions
are realized. All values of X in the known decomposi-
tion range appear in (14). Moreover, since we know
that the decomposition has multiplicity two, we deduce
from the above that the coefficient ¢!, say, and the
function W1(#’, h") = W((¢, b), (¢, b)) appear in (14)
while the function W2(h', ") =Y%((¢, b), (4,b)) =0
and so does not appear in the particular case i’ = h".
Since, in general, W*(#', h") is defined over a 6-
dimensional space, its vanishing over a 3-dimensional
subspace h" = h” does not contradict normalization.
We must therefore be able to write (14) in the form of
Eq. (2), ie., as

FES (D)
=22 2 X dXoXAX X A

w n

X ‘F‘”:f* FEEE(, ), (4, b)) (15)

This method of procedure will subsequently be
justified.
The real part of Eq. (11) may be used to write

( 1)('n — M)
X—=X"|

(8ﬂ2)—le—ih\'+/l’+/\”)¢ei(.’\'-2111)[1(l-)(2ll[—x\')JN_2M(bx)
= z (="M cos [(n' — M)a + (N — 2M)y]

x W (4, YR (4, b). (16)

This is evidently the converse relation to (14), corre-
sponding to (8) for the case w = 1, and we must
therefore be able to write it in the same form as (8),
ie., as

WXL DX (B, ), (H, b))

_ZZCXAA).\ ‘2" *l},h\ )(¢ b)\}h\ l(¢, b) (17)

Since the representation (1) is diagonal in helicity
(i.e., with b= 0), the Wigner coefficients must
contain a factor 6,,; ,41yny1-» and the necessary
valuedness of the product of two representations
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implies a further factor 9, ;.. -1, where 2’ + 2"//1 =
(4" + A")(mod 1). Finally, the Clebsch-Gordan series
implies a coefficient factor A(X, X', X") =1 or 0,
according to whether or not it is possible to form a
triangle from the three quantities X, X', and X"

Comparison of (17) with (16) and of (15) with (14)
then yields

WZ;YA:X’A’X”}."((d), b), (¢’ b)) = 0,

\Iﬂfl;X’l’X”A"((gb’ b), (¢’ b))
— (27TA)—%(8Tr2)——le—i(n+l)¢ei(ﬂ—2]u+l—l'——).")ﬂ
X ()M st aa i (DX)

= QmAY Y87 DN rana(d, $), (19)

(18)

where

M+ —=2=0 if (2,2)=(0,0),(,0),(0,1}),
=+1if A, 2)=(@, D),

and

ch}.X'A'X")."
n n o’

= (=" M2mA)yt
X cos [(n" — Myax + (n' + n" — 2M)y]
X OpiamraensarOpaaainAX, X', X"), (20)

where by convention we have adopted the positive
square root in the factor (2m4)~2.

The identification of ¥ with one set of standard
2-particle basis functions corresponds to the choice of
real Wigner coefficients ¢'. Furthermore, the ¢! are
symmetric under interchange of (X’A’n’) and (X"A"n")
(under which y by definition changes value), so we
see that by (8) the ¥ must be symmetric under
interchange of (X', ') and (X"1", "), as is indeed
the case for (19) in which A" = A" [= (¢, b)]. The
known multiplicity of the decomposition and the
orthogonality and completeness relations (5) and (6)
imply the existence of another set of coefficients
which, with choice of positive over-all sign, are
evidently

2XAX' A X"
Ca n

= (=1)" My

% sin [(n' — M)a + (n" + n" — 2M)y]
X 8s g tarinr a0 anDX, X X7, (21)
Together with the ¢! of (20), these do satisfy (5)
and (6). The coefficients ¢? are antisymmetric under
interchange of (X’A'n") and (X"A"n"), and thus corre-
spond to 2-particle basis functions W2(h', h") which
are antisymmetric under interchange of constituent
representations and, thus not inconsistently, vanish
when A" = h" [= (¢, b)] as given by (18). The final
verification that the coefficients ¢! and c? are given

by (20) and (21) is that, by using the real part of (9),
we may prove'? that these coefficients do satisfy (3)
for the representations (1).

The 2-particle irreducible basis functions W (h’, #")
are now, in general, given explicitly by (8), together
with (20), (21), and (12), although they only have
simple forms in the case /" = h”. Thus, use of the real
part of the identity (11) yields (16) and, hence, (19)
as the case of (8) when i’ =h"[= (¢, b)] and
o = 1, and use of the imaginary part of (11) yields
(18) when h' =h" and w = 2. The symmetry or
antisymmetry properties of the W' are explicitly
confirmed by the definition (8) and the properties of
the coefficients ¢®. This is in accord with the custom-
ary preference for constructing symmetric and anti-
symmetric functions and coefficients for a group
whose representation decomposition series has multi-
plicity two.

Because of the completeness of the coefficients (20)
and (21), given by (6), and-the orthonormality of the
single-particle basis functions (12) given by (13), the
functions ¥ given by (8) are orthonormal according
to

4r 4r 2r 27 =) 0
f dd)’f d¢/: dﬁff dﬁ”f b’ db'J‘ b" db"
0 0 0 0 0 0
X llfw;}’}.;X'l'X"].”((¢/, bl)’ (¢u, bll))
% Tﬁ;_fl’[;-?’l’x”}”(((ﬁ /, b’), (QS”, bﬂ))*
=04, 0,:0,10(W — W)
X 0,030, 1:0(W — WHOW" — W) (22)

when (X7) appears in the decomposition of the prod-
uct of the representations (X'A") and (X"1").

IV. COMMENTS ON THE METHOD

It might be thought that a similar method could
be used to derive the Clebsch-Gordan coefficients for
the rotation group O(3). However, the essence of
our derivation above is the symmetry in & and X
of the Bessel-function part of the representation (1)
for which the addition formula (11), with argument
(bX), is relevant both when X is fixed and b takes two
values (as used in an explicit demonstration of the
representation property) and also when b is fixed and
X takes two values (as used above in the derivation
of the Wigner coefficients). In the case of the rotation
group, the addition theorem for spherical harmonics
which is used to demonstrate the representation
property cannot be used for a fixed value of the group
(angle) parameter and two different values of the
Casimir (spin) operator.

It would be possible in principle to proceed from
a comparison of (9) with (3) and of (11) with (7),
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without mentioning the explicit form of single-
particle basis functions. The imposition of symmetry~
antisymmetry and reality conditions and choice of
over-all signs still do not, however, determine the
coefficients uniquely, as we have seen; M can take
any (fixed) integer value. Although this nonunique-
ness might seem to be a consequence of the multi-
plicity two,!? it is, in fact, simply a result of the form

of the dependence of the representations (1) and the

coefficients (20) and (21) on the helicity indices,
which assume an infinite range:

DX} iu(b, @) = e DXA(b, $),  (23)
Lo X X X g = [ XV E e, (24)

mn,n,n", u= —ow, -, 4+ oo (integers).

Use of only (23) and (24) shows that, if (3) is satisfied
by c® with M = 0, it is satisfied by c® with M = p,
for any fixed integer u. Proceeding from Eqgs. (3) and
(7), which involve the representations themselves and
have a quadratic dependence on the coefficients,
would not give any particular reason for a standard
choice of coefficients, and the existence of an infinite
family of sets of coefficients (corresponding to
different integer M) all having the symmetry-anti-
symmetry properties might escape notice. Our
method used above, which proceeds via basis func-
tions obtained from a row of the representations,
immediately yields that family and suggests the possi-
bility of a relation of the type (24).

In general, a 2-particle basis function defined by
(8) for a set of coefficients satisfying (3), (5), and (6)
and for any set of single-particle basis functions which
transform under the representations appearing in (3)
has the correct irreducible transformation property.
There is, in principle, no need, therefore, to use the
same value of M in the single-particie basis functions
(12) as in the coefficients (20) and (21). However,
the sum (8) will not, in general, be simplifiable. Our
method leads in a natural way to a convention for
choosing coefficients and basis functions; the choice
of the same value of M in the ¥'X'# and the ¢® corre-
sponds to a choice which gives the simple formula
(19), i.e., to a formula for the 2-particle basis functions
Ye(h', ") which, for the case A’ = h” in particular,
is the simplest.

V. PROPERTIES OF THE COEFFICIENTS

The coefficients given by (20) and (21), for fixed
M, satisfy Eq. (3) defining the Wigner coefficients for
the representations (1). In addition, all the orthogo-
nality and completeness relations (5) and (6), express-
ing the unitarity of the transformations effected by the

coefficients, are satisfied, and hence (7) also is
satisfied.

We have therefore obtained the Wigner coefficients
(20) and (21) for the faithful unitary irreducible
representations of E(2) given by (1). Single-particle
basis functions may be realized by (12) and normalized
according to (13), and the 2-particle irreducible basis
functions defined by (8) [of which (18) and (19) are
then particular cases] are then normalized according
to (22). The coefficients have been chosen to be real,
and the two sets of coefficients (and 2-particle basis
functions) appropriate to the known multiplicity two
of the direct product decomposition correspond to
symmetry and antisymmetry under interchange of
constituent representations.

Some symmetry relations are

XXX _

1.,
s XANX'2Z'X"2”
n onow xc ’

n” 3

(25)

czf&A‘\AJX/.

—n) n' n
1
_ X2 XA XA
= ¢ e pam—i) 03w’ 23on s (26)
EX A XX A

Cu " 0w
= +(-1)" “MCI(H Ma 4272 A on’) A 27— 1 1) 5
1 (27)
11}27.1\'/1;‘\").’3\"‘1”(((#/’ b’), (QS”, bu))
= LPTIXVXI( W), (4, ). (28)
A recurrence relation is
c“tha vt gy = 2 R+ 2y + m)e AR,
=1
(29)
where
R(6) = (c.os f —sin 0).
sinf cos@

Finally, we note that coefficients for different values
of M are obtained from each other by a rotation, in
the 2-dimensional subspace labeled by ®, which
preserves the symmetry-antisymmetry properties.
For instance,!?

XAX'A' X"
[Cwn 7}' n” ]ﬂ[=u

= Z R, a(—u(e + 2y + m))[c

OXAX'A' XA
n n n”

lao- (30)

For a standard set of coefficients we may choose
M = 0; this results in the simplest behavior under
cyclic reordering of representation labels (27).

V1. DISCUSSION

The law for the decomposition of a direct product
shows that the Casimir operators combine somewhat
like the spins of the O(3) case, with values of X



44 H. P. W. GOTTLIEB

appearing between the difference and sum of the
original two values. However, unlike the O(3) spin
case where a discrete spectrum occurs, for E(2) a
continuum of representations appears, with multi-
plicity two. In general, every component (allowed by
angular momentum conservation) of representations
specified by every value of the Casimir operator
occurring in the decomposition will eventually appear
with nonzero coefficient, although it may appear as
only one of the symmetric or antisymmetric types. If,
in a particular instance, the trigonometric function
in a coefficient of one type vanishes, then the trigono-
metric function in the corresponding coefficient of
the other type will be unity.

The most interesting behavior of the coefficients
occurs at the two ends of the decomposition spectrum,
where the limiting cases may be analyzed using the
geometry of Fig. 1 and also the fact that

A=IX+X +X)MX +Xx - X)t
x [X — (X — XX — (X" — X))t

As X tends to X' + X’, the (moduli of the) sym-
metric-type coefficients ¢ tend to infinity like an
inverse fourth root, while the antisymmetric-type
coefficients ¢? tend to zero. If X' # X", the same holds
as X — |X’ — X’|. Thus, if X' # X", the “stretch”
cases are infinitely more likely to occur than inter-
mediate values which are always finite, and this sug-
gests that a first approximation to a decomposition of
a direct product might consider that only these two
cases occur and are of the symmetric type.

When X' =X" and » 4+ n" is even, as X —
|X' — X”| = 0 the coefficients ¢! tend to infinity like
an inverse square root, ie., faster than for any of
the previous cases, and the coefficients ¢* tend to zero;
but if n’ + n” is odd, it is the antisymmetric-type
coefficients ¢ which tend to infinity like an inverse
square root while the coefficients ¢* tend to zero
(since y — }m). This suggests that, in the product of
two similar representations, the representations most
likely to occur may be regarded in the limit as having
X = 0, leading to two infinitely reducible repre-
sentations consisting of 1-dimensional irreducible,
but unfaithful, representations of E(2) which are just
the standard (faithful, irreducible) helicity repre-
sentations of O(2). There are then effectively two

degenerate infinite towers of helicity representations
of 0(2). The towers differ in their symmetry properties
and each contains helicity values differing by two;
together they yield every (integer or half-integer)
helicity just once. If the constituent representations
are both single valued, then »n" + n” =n, and the
even-helicity components have the symmetric property
under interchange of constituent representations,
while the odd-helicity components are of the anti-
symmetric type. The same may be said when the
resultant representations are double valued, provided
that } is subtracted from the helicity values. If both
the constituent representations are double valued,
then it is the odd-helicity components which are of
the symmetric type and the even-helicity components
which are of the antisymmetric type.
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The problem of developing relations for the statistical distribution of the angular momentum states of
an electron configuration /¥, where / and N are large, has been considered. If D(L) is the number of times
the orbital angular momentum L occurs, then, using the theory of partitions and groups, we find that the
numbers D(L) are approximately distributed with respect to L according to the Wigner-type form

D(L) = A(L + P exp [~ (L + P?*20%.

A number of examples are examined.

I. INTRODUCTION

In recent years there has been considerable interest
in the statistical description of the average properties of
atomic and nuclear spectra, especially of nuclear-level
densities and the distribution of energy-level spacings.!
Bloch? has discussed the distribution of angular
momenta among the nuclear levels and established
that the number N of levels with angular momentum
J and energy up to a given value is

(N

which is the form of the usual Wigner distribution.?
Bloch’s result was developed from an examination of
nuclear-level density models.

In this paper we wish to consider the determination
of the distribution of the number of states D(L) as a
function of the total orbital angular momentum L
associated with the states of maximal spin of a
configuration /Y of N electrons occupying equivalent
orbitals of angular momenta x =/, where / is an
integer. For x = j, a half-integer, we obtain the jj
coupling analog of this problem.

Bloch’s derivation of Eq. (1) involved a detailed
study of the nuclear-level density problem together
with entropy considerations. In our problem the
Pauli exclusion principle assumes a fundamental
importance because we wish to restrict our attention
to the occupation of a single electron shell, and thus
Bloch’s result cannot be simply translated to the
solution of our problem. Rather, we must choose a
different line of attack.

Our work originally arose from the empirical
observation that, if the irreducible representation I'}
of a Lie group G, where A is the highest weight of the
representation, is decomposed into the irreducible
representations DY of the subgroup R; such that

Fé‘ = ;gl.fﬂ)]’

Ny~ @QJ + Dexp [-( + $)*/20°],

2
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where g, is the number of times DY appears in the
decomposition, then the numbers g,; tend, under
certain conditions, to be distributed with respect to
the maximal weight J of 97 according to a distribution
analogous to that given in Eq. (1).

The problem of decomposing irreducible representa-
tions of a higher Lie group into those of the 3-
dimensional group R; is, of course, common in the
enumeration of the angular momentum states in the
LS and jj coupling of identical fermions in atomic
spectroscopy.

The above observations suggest that the discussion
of the statistical properties of atomic and nuclear
spectra might in some cases be developed from the
vantage point of group theory. Here, we propose to
develop some of the relevant mathematical tools and,
in particular, to establish the Wigner form as an
approximation relevant to the problem at hand with
the hope of stimulating the further development of a
statistical group theory.

In Sec. 1I we recast the problem of the enumeration
of the angular momentum states of a configuration of
identical fermions in terms of the plethysm of S
functions. This then allows us, in Sec. IlI, to obtain a
connection between the problem of enumerating
angular momentum states and that of enumerating
partitions in ordinary number theory. Having demon-
strated the relevance of the theory of partitions to the
problem at hand, we then investigate in Sec. IV
methods of obtaining polynomial coefficients that give
an approximate representation of the relevant
partitions. This development leads to the need to
consider three basic types of partitions, @, P, and R,
which correspond to differently classified partitions.
These are defined in Sec. 1V, and relationships
between them investigated briefly in Sec. V. The
Wigner form as an approximate solution to our
problem is developed in Sec. VI using the previous
results. A brief discussion of the extension of the
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problem to states of nonmaximal multiplicity is
given in Sec. VII, which establishes the Wigner form
once again. A detailed example of the application
of our methods to the states of the configuration /%,
I =6, is given in Sec. VIII, while in Sec. IX we
consider the estimation of the quantities 4 and o
associated with the Wigner form. In Sec. X we apply
these results to the case of the configuration 113, / = 14.

II. ENUMERATION OF ANGULAR MOMENTUM
STATES

The group-theoretical classification of the angular
momentum states of identical fermions is well known?
in atomic and nuclear spectroscopy, and here we
simply recast the familiar theory in terms of the
plethysm of S functions.®? In LS coupling the orbital
angular-momentum states of the N-particle configura-
tion /¥ are classified using the chain of groups

©)

while in the jj-coupled configuration j* the chain of
groups

U21+1 — Ry — Ry,

Uzji1 = Spajpn = Ry 4)
is appropriate.
If under the restriction G — R; the character [1]

* of the vector representation 'l decomposes as
[]— ; g7 )

then the decomposition of the character [A] of the
representation '[! of G will contain all the terms that
arise in the plethysm$.?

(g ng) ® Al =3 g1, ©)

where [J] is the character of the representation DY
of R;. Methods for evaluating the plethysms of Eq.
(7) in terms of S functions have been discussed else-
where.?~10

In the case of electrons, the orbital states [L] of
spin S and of the configuration /¥ are just those that
arise in the decomposition under U, — Ry of the
unitary group character {2¥-25125}  which is equiv-
alent to the similarly designated S function con-
structed on the characteristic roots of the unitary
matrices of rank 2/ +- 1. This § function may be
written in terms of the elementary symmetry functions
a, to give

{2N—2S12S} — {11\'}{11\’—-—28} — {11’\'+1}{1N—2S—1}‘ (7)

The orbital states associated with maximum S will be
just those arising in the reduction of the unitary
character {1V}.

B. G. WYBOURNE

If under the group restriction
(8)

we have {1} — [/], then it follows from Egs. (6) and
(7) that the orbital states [L] associated with spin S
in the /¥ configurations are just those terms arising
in the plethysm

Usis1 — Ry

[l] ® {21\'—2812,5‘}
= (e {I")([ e {1725
— (e {IMHh([ e {1¥*51})
= ([2I = N + 1)/2] ® {N})
X ([(21 — N + 28 + 1)/2] ® {N — 25}
— (= N)2]®{N + 1}
X ([(21 = N +29)2]® {N —25 —1}), (9

where the last line follows from Hermite’s reciprocity
principle.® Equation (9) suggests that any discussion
of the statistical distribution of orbital angular-
momentum states will require a knowledge of the
distribution of the terms arising in the basic plethysm

[P] ® {k} = g gpkL[L]’ (10)

where p is an integer or half-integer and k is an
integer.

For nucleon configurations involving both protons
and neutrons, it is necessary also to consider the
isotopic spin T which necessitates the examination of
the reduction of S functions associated with Young
tableaux of up to four columns, and the analogs of
Eq. (9) are somewhat more complex.

The angular momentum states [J] of a jj-coupled
configuration jV of electrons are just those terms
arising in the plethysm

e {1} =12 - N+ D2l {N}, (1)

assuming that under U,;,; — R, we have {1} — [j].
Again the basic plethysm is of the form
[P ® {k} = 3 gus V). (12)
Equations (10) and (12) indicate that a statistical
group theory of angular momentum states must place
considerable emphasis on the terms arising in the
plethysm
[P ® {k} = X glrl, (13)
where k is an integer and p and r are integers or
half-integers.
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HI. ANGULAR MOMENTUM STATES AND
PARTITIONS

Having established the relevance of the plethysm of
S functions to the traditional spectroscopic problem
of the enumeration of angular momentum states, we
now translate the plethysm given in Eq. (13) into
partition functions familiar in number theory.!* The
terms arising in the plethysm given by Eq. (13) may
be evaluated by noting a theorem due to Littlewood,”
which states that, if

[Pl % {k} = 2 8,,[r], (14)

then g, is the coefficient of p=" in the expansion of

Pl = p) 11 [(1 = p™)id = pH. (19

The evaluation of the coefficients of p~* in the above
expansion is a very tedious, though elementary, task
and is well suited to machine computation. Even
plethysms such as [8] @ {13}, where the coefficient
of p~# is 30598, may be rapidly evaluated by a
moderately fast computer. A plot of the coefficients of
p " versus r for [8] @ {13} is displayed in Fig. 1. This
plot can be considered as representing the distribution
of the orbital states [L] associated with the maximum
multiplicity of the configuration 13, / = 14, but we
postpone detailed discussion until later.

While Eq. (14) is well adapted to machine calcula-
tion, it js not in a form suitable for describing the
distribution of the coefficients of p=" as p and k
become very large.

3
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Fic. 1. Distribution D(L) of the orbital states associated with
maximum multiplicity for /*3. The dotted points are from the explicit
calculation of the values of D(L) for the integers L, while the smooth
curve is the Wigner-type distribution, 0 = 23.2 and 4 = 2170.

From number theory and the theory of parti-
tions,'1.22 jt js well known that the coefficient of x? in

I:I1 (1 = x™9/(1 = x7)

is, in Cayley’s notation,'* just PX(g), which is the
number of ordered partitions of ¢ made up of the sum
of m terms with the elements 0, 1, 2,---, k. The
ordering is in ascending magnitude of the elements in
going from left to right. The elements of the partition
are all positive integers, and we define

PO)=Pr1)=1, k2>1. (16)
We may now express the coefficient g, of Eq. (14) as

8ot = PE(x) — PP(x — 1), (17

where x = kp — r, This result forms the key to analyz-
ing the statistical distribution of orbital states [L],
with maximum multiplicity, for the case of LS
coupling or of the total angular momentum states
[/] for jj coupling.

Equation (17) possesses a number of obvious
properties which readily demonstrate well-known
results. Thus, the maximum value of r is pk; in this
case, g .= 1, and it follows from Eq. (16) that, for
the penultimate value of r, we have g, = 0.1f2p > k,
then the coefficient g, becomes

Eor = Po(x) — P(x — ) = Pi(x),  (18)

where P;(x) is the number of ordered partitions of x
with no part greater than k and where P¥(x) is the
number of partitions of x with no part less than k.

While mathematicians have devoted considerable
attention to the asymptotic form of P(x), the number
of ordered partitions of n without restriction, very
little has been reported on the asymptotic behavior
of the coefficients defined by Eqs. (17) and (18). In
the case of Eq. (18), it is not difficult to establish the
special results:

Pf(x) =1, xeven,
=0, xodd, x> 2; (19a)
PHx) =1 + 1 t=c. (3x), X even,
t=c. [§(x —3)], xodd. (19b)

These two results suggest that the distributions for the
odd and even values of x are distinct, as is indeed
found by empirical observation. The extension of
Eq. (18) to cases with k> 3 leads to unwieldy
formulas of increasing complexity, and for this
reason an alternative method of approximating g ..
by using a series of polynomials to generate the parti-
tion numbers has been developed.
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IV. POLYNOMIAL COEFFICIENTS AND
PARTITION NUMBERS

We now consider the problem of representing the
partition numbers associated with Eq. (17) in terms
of polynomial coefficients, which are then used to
provide an approximation for the distribution of the
number g .. To do this, we must first develop a
systematic notation to provide a connection between
the representation of ordered and unordered parti-
tions, taking care to distinguish this notation from that
commonly used for S functions and the labeling of
group representations.

We commence the development of our notation by
first considering a few examples which will be used to
illustrate the general notation described later.

The number of ordered partitions of the positive
integer x into m parts may be designated as (1™)q(x).
If a partition of x has at least two members equal, the
number of such partitions is written as (1"7%21),(x).
The subscripted letter Q is used to designate this type
of partition. In this case, we have

Xx=ay+ "+ g + 2, (20)
where the a;; are the set of integers constituting a
particular partition of x and where the coefficients of
the a,; give the number of times they occur in the
partition. For example, if we let m = 5 in Eq. (20),
two sets A satisfying this relationship would be

6=0+0+40+23
or
T=04+2+3+21,

where the corresponding partitions are

0 00 33
and
011 2 3.

Similarly, if a partition is a member of the set
(1m-428)5(x), then it has at least two pairs of equal
members. A typical example for m = 5 would be
04+0+1+142

The above notation may be made quite general by
letting

ng)o(x)

denote the number of ordered selections of a,;, (A4),
such that

(nllxnéz e

x=mlay +ap+- "+ ay,)
+ nalas; + -0 + ay,)

Foeee 4 nq(gn +- 4+ aqle)' (21)

Now it will be noticed that

(1M)(x) = P™(x).
If the a;; are restricted to a,; < k, then

(I")(x) = Pi¥(x). (22)
Later, we will not wish to distinguish between the
various x’s and k’s and will write

(n'+ " ngg
for the number of ordered selections satisfying Eq.
(21) for any given x or k.

The unordered sets of a;; satisfying Eq. (21) will be
designated by (ni*---nl)p. In a given set A, it is
possible that two or more a,; are equal without
necessarily having equivalent subscripts. If we restrict
ourselves to the case where all g,; are ordered and
distinct, we have a new set of solutions of Eq. (21)
(a subset of the more general case) which we will
write as (nl - - - nlo)p . We shall later refer to arbitrary
representations of (nlt---nl)g, (n}---nl)p, and
(ni---nlp as Q, P, and R representations, respec-
tively. The utility of this rotation is that, as we shall
show, we can express the Q and P partitions in terms
of the R partitions, thus permitting a solution of the
Q partitions in terms of the P partitions.

The P partition (n} * - - nl)p(x) with a,; < k is just
the coefficient of z* in the product

1];(1 4 zMe z"ik)li’ (23)

and it is from an approximation of the coefficients of
this product that an approximation of the numbers of
the partition emerges.

V. RELATIONSHIPS BETWEEN Q-, P-, AND
R-TYPE PARTITIONS

We now develop relationships between the Q-, P-,
and R-type partitions which will later be used to
analyze angular momentum distributions. We may
readily establish the typical relationships

(19¢ = (1D + (1) + (2 + (1B)r + @)z,
(1%2)g = (I22)z + 2O)r + (13)r + Wz,
(22)9 = (2)r + Dz,
(13)g = (13)g + Dr>
(4)0 = (4)R'
The general method of obtaining these relationships

is to select differing groups of a,, as being equal and
to make no distinction between members in which the

(24)

first subscripts are equal. The genéral problem of

establishing these relationships is by no means
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TasLE I. Representation of Q-type partitions in terms of P-type partitions.

MN™1

) %

o )

1
(19 = 57 [(195 + @9]

! 1
1 3t
1

(19 = % [(A3)p + 3(122Y)p + 2(3Y)p]

M N
21
m=2 11
01 0 1
111 6 3
m=3 11 1
1
1 1 1 1 1 24 12 6
1 1 1 1 2 2
m=4 1 0 1 2
1 1
1

4 1 1 6 3 8 6
2 1 ) 12 0 0 12
0 1 i 12 0 12
11 24 0

1 24

1%, = ;117 [(19p + 6(1221)p + 3(2%)p + 8(1131), + 6(41)]

trivial especially because, in higher cases, coefficients
greater than one appear. Examples of this are

(122%)g = (1”295 + (2°)r + (123)r + (3%
+ (1?4 + 2Q24)r + (15)g + (6),
(12224) 5 = (122%4)g + (2%4) + (1234)5 + (3*4)p
+ (4% + 2240 + (1235)g + (235)r
+ 2(145)p + (59 + (1226)g + 2(2°6)r
+ (136)g + 3(46)g + (127)z + (37)g
+ (1%8)z + 2(28)r + (19)g + (10)z.
Relationships, such as given in Eq. (24), between
the Q- and R-type partitions may be written in matrix
form by treating the various Q and R partitions as
components of vectors Q and R, where the ordering of
the components is standard, as in Eq. (24). Thus, we
have
Q = MR,
where, in the case of Eq. (24), the matrix M is
1 111
1 1 1
1 0
1

(25)

0

— et ek et

By considering the foregoing in terms of set theory,
it can be shown that the transformation matrix M
always exists and is upper triangular.

The problem of expressing P partitions in terms of
R partitions is a somewhat more difficult problem,
but the result is similar to that of Eq. (25). We may
generally write in vector form

P = NR, (26)

where N is a transformation matrix similar to that of
the M matrix of Eq. (25), namely, N is upper tri-
angular with no zero terms on the diagonal. Thus, the
inverse matrix N1 exists, and we may write

Q = MNP, X))

which allows us to relate the Q partitions to the P
partitions. However, since we are only interested here
in terms of the form (1™), , the enumeration of MN-!
is not in general necessary. Solutions for m = 2 to 4
are given in Table I.

V1. ANGULAR MOMENTA DISTRIBUTION
FORMULA
We now show that the coefficients of the poly-
nomials have, in the limit, a normal distribution; as a
consequence, the numbers g . follow a Wigner-type
distribution with respect to r.
The coefficients of polynomials of the form

(l+x+...+xm)n

tend to a normal distribution as n — o0. For m = 1
this is, of course, the well-known binomial case. Proof
for higher values of m may be readily obtained by
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statistical methods. Thus, we will assume a distri-
bution of the form A exp ([—(x — u)?/20?]) for the
terms in the expansion of (1), as m — co. Using
the notation of Eq. (23), we obtain

#= %tk 3 nl;
= iqk. (28)
Recalling Eq. (17),
8orr = Pi7(x) — PP(x — 1),
and, substituting for x, we obtain
8our = Pi’(kp — 1) — P(kp —r — 1). (29)
But ¢ = 2p and hence u = kp, so that if we let
GX(r) = P%(kp — 1), (30)

then G(r) will in general be a sum of normal distri-
butions with mean zero and

Zor = GL(1) = GZ(r + 1),
Using the finite-difference operator V, defined by
VF(x) = F(x) — F(x + 1),

(31)

(32)
we have

8ok = VGI(1). (33)
Now

G(r) =2 A;exp (_2-:;),

and, remembering that V is linear, we will consider

fow (2] o0 (2 - o0 (522
- (25 on ()
o (2]

Upon expansion, we find that
2 + ;) _(r + _1)2
V| ex —_x):'=(r 2/ ex ( 2)
,: P (202 o P 2¢*

1
-]
40
but ¢ — o0 as m — o0, and hence

oo (52)] - ton ().

(4

which is just the usual form of the Wigner distribution.

Thus, the distribution g .. is a sum of Wigner-type
distributions and not just a single Wigner distribution,
enabling us to write

2p, _ . _(r + %)2
VGE(r) = 3 Ar + 1) exp (——26% ) (35)

VII. STATES OF NONMAXIMUM MULTIPLICITY

If, as we would hope, states of nonmaximum
multiplicity are also, in the limit, representable in
terms of a sum of Wigner-type distributions, then it
will suffice to show that the multiplication of functions
G(r) by using angular momentum multiplication pre-
serves the character of the distribution since the states
of nonmaximum multiplicity can be expressed as
sums of products of the states of maximum multi-
plicity.

Remembering the usual rule for angular momentum
products,

LxL =(L+L)+@L+L -1

4+ -+ |L—-L", (36)
we can write the product of two distributions as
o0 r+1
(G, X Gy)(r) = ZOG(!') 2 Gk), r>i,
i= k=r—1
o0 r4i
=>G() Y Gk), r<i. 37
i=0 E=i—r
But, if we extend G(r) by defining
G(—r —1)=G(r), (38)
we have
) r+i
(G1 X Gy)(r) =2(:)G(i) > Gk), Vr,i (39
i= k=r—1
Now
V(G: x Gy)
Y T4 ' r+i+1
=zam(z@m—-zcwﬁ
=0 k=pr—1 k=r—i+1

= S [G0G,r = ) = GG + 1+ D). (40)

If we let i’ = —i — 1 and make use of Eq. (38), then

V(G, x Gy) = E: G(DGy(r — ).

i=—m

(41)

But this is the usual polynomial product, and, if we
denote this by

GV G = 3 Gy()Galr — i),

T=—0

(42)

we have

G, x Gy = V1(G, V Gy). (43)

Using the linearity of V, we obtain
Gy X G, =V [(VG) vV (V1G]

But V-G is a normal distribution which is reproduced
under polynomial multiplication, so that we may
write

G, X G, = VN, (44)
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where N is a normal distribution and, of course,
VN is the Wigner-type distribution.

Thus, the Wigner-type distribution is reproduced
under normal angular momentum multiplication.
This is an aesthetically very pleasing result and we feel
that it argues strongly for consideration of the
distribution of the g, in terms of the Wigner
distribution.

VHI. EXAMPLE OF ;3

We now calculate a specific example of the fore-
going theory, and in the process we demonstrate one
of the more outstanding deviations from the Wigner-
type distribution. Let us consider the states of maxi-
mum multiplicity of the i® configuration which is
sufficiently simple to be readily accessible numerically,
but large enough to exhibit the main features. Recall

Eq. (17):
Zoir = P22(x) — P(x — 1), x=kp—r.
Normally we write

2p=21+1-N (45a)
and

k=N, (45b)

where N is the number of electrons with orbital
angular momentum /.

However, since we deal here only with states of
maximum multiplicity, we may simplify our calcula-
tions by recalling the }-shell symmetry of these states
and considering only the cases where

=N (462)

and
k=2l4+1—-N. (46b)

Thus, for 5, from Eqs. (17) and (32), we have
D(L) =

520 — L). 47

From the solution of the matrix MN~! for g = 5, we
obtain the relationship

(1% = %[(15),, + 10(1°2Yp + 15(1'29) 4 20(133Y),,

+ 20(2'3Y, + 30(1'4Y),, + 24(5H,).  (48)
Equations (47) and (48) then lead to
D(L) = thaV(10)p + 5 V(12 + §9(1129),
+ V() + V@), + V0,
+ Ve, (49)

with a;; < 8 [see Eq. (21)].
The distribution D(L) for the terms of maximum
multiplicity in % is plotted in Fig. 2. It will be noted
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Fi1G. 2. Plot of D(L) vs L for the terms of i® with maximum muiti-
plicity.

that the graph appears to split into two, one for eren’
values of L being consistently less than that for odd
values of L. This type of deviation from the Wigner
form tends to be common and can be explained in
terms of the P partitions making up the various
distributions.

Examination of the individual terms in Eq. (49)
reveals that most of the “splitting” is caused by the
term V(1'22),, and a small contribution from V(1321),,.
For any general term of the form V(1"2"),,, we have

V{"2")p = (1")p V V(2")p. (50)

However,
[V2")pl2x + 1) = = [V(2")p](2%),

so that all the terms V(1"2"), tend to have large differ-
ences between their odd and even values and thus give
the very common splitting effect. Similar effects for
terms of the form V(1™3*)p, etc., occur but are less
prominent because, in general, the terms V(19)p,
V(19-22%),, and V(177422), tend to predominate in any
given distribution. Furthermore, many of the terms
tend mutually to cancel their respective splittings.
These effects become less important as ¢ becomes
large since the terms V(19-221),,, etc., tend to become
smoothed.

IX. ESTIMATION OF 4 AND ¢

The results of the previous sections have established
that, for sufficiently large / and N, the orbital angular
momenta L of the states of maximum multiplicity of
an electron configuration /~ are distributed according
to the Wigner-type distribution

D(L) = 3 AL + ) exp [=(L + })*207] (51)

or, to a lesser approximation, as a single Wigner
distribution

D(L) = A(L + Y exp [—(L + }*20°]. (52)
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We now proceed to estimate the values of 4 and o.
Two procedures are possible: Either we can obtain the
A; and o; of the various polynomials associated with
the P-type partitions which sum to give the g . or we
can obtain the value of o from the value of L for which
D(L) is a maximum and then relate o to 4. The first
method requires the solution of the MN—! matrix
for the requisite values of ¢ and becomes a complex,
though interesting, problem for large values of gq.
The estimation is straightforward though tedious.
In the case of i® we find

(B)p: oy =575, A, = 1.44,
(12, 0y = 6.85, A, = 0.4,
(122),: oy = 7.75, Az = 0.055,

which is in reasonable agreement with the observed
position of the maximum at L = 7.

For ¢* we have ¢ = 13 and the above method
becomes extremely tedious. We shall simply estimate
A and o, assuming a single distribution. We first note
that the orbital states associated with the states of
maximum multiplicity in /" span the {1V} representa-
tion of Uy, and hence from dimensional con-
siderations we have

S QL + 1)D(L)
_ (21 + 1)
N
~ f "L + DAL + 3 exp [—(L + 1207 dL
= A7), (53)

which provides an important relationship between
A and o. Likewise, it is a simple matter to show that

QL + 1) ~ (2m)ko. (54)

X. EXAMPLE OF 13

Explfcit calculation of the orbital angular momen-
tum states associated with maximum multiplicity in 13
gave the points plotted in Fig. 1, from which we
deduce

0 =232 and A = 2170, (55)

the value of A being obtained via Eq. (53). A plot of
the Wigner-type distribution (Eq. 52) using these
values has been superimposed on the points of Fig. 1
and shows a remarkably good fit. Use of Eq. (54)
gives (2L + 1) = 58.2, which may be compared with
the calculated value of 58.25.

XI. CONCLUSION

We have shown, using some extensions of the theory
of partitions and groups, that for /» 0 the distri-
bution of the orbital states in the LS-coupling scheme
of a configuration /™ of equivalent electrons may be
approximated by a Wigner-type distribution. Exactly
the same analysis may be carried out for the jj-
coupling scheme with identical conclusions. Similar
results should be obtained for the coupling of nucleons
in the nuclear case.

A number of problems remain to be resolved. It
would clearly be desirable to obtain expressions for
A and ¢ directly in terms of the number of particles ¥
and their orbital momenta /. This problem is closely
akin to the elusive problem of solving the Clebsch-
Gordan series in an analytic sense. A number of
interesting aspects of the theory of partitions that
could impinge on this problem remain to be fully
investigated. In this sense our present work must be
regarded as a preliminary attack on the problem of
examining some statistical aspects of group theory
and the many-body problem.
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The probabilistic intérpretation of the classical scattering cross section is discussed in a mathematically
rigorous framework. In particular, extensive use is made of the notion of a Poisson process based on a
plane and on a sphere. The case of Rutherford scattering is given as a detailed iltustration.

1. INTRODUCTION

A casual reading of the standard treatments of
classical 1-particle potential scattering indicate the
differential cross section and the total cross section
have (at least vaguely) a probabilistic interpretation.
For example, see Newton, Ref. 1, Chap. 5. It is our
intention in this paper to make explicit the probabilistic
interpretation of these observables. A similar inter-
pretation should hold in the more important quantum
mechanical case.

In Sec. 2 we define the notion of a scattering system
which includes the notion of a potential scattering
system as a special case. We feel our more general
definition isolates the essential features of classical
elastic scattering.? In Sec. 3 we make precise the notion
of an infinite beam of particles with a fixed velocity
v but with uniformly distributed impact parameters.
Once this is done, we shall see that the cross-section
measure of a scattering system S in the direction v is
a measure o(v, -) on S%, the 2-sphere in [R3. In par-
ticular, for 2 < §2, o(v, Z) will turn out to be the
expected number of particles in the beam which are
scattered in the direction of X divided by the beam
intensity. If ¢(v, -) has a Radon-Nikodym derivative
do(v, -)/dQ with respect to the canonical measure £
on S§2, we call do(v, -)/dQ the differential cross section
of S in the direction v. The integral

J;Sz—v/livll)

is called the total cross section (perhaps infinite), and
it is the expected number of particles in the beam
which are scattered, divided by the beam intensity.

In Sec. 4 we prove an approximation theorem
which we feel justifies our definition of an incoming
beam of particles. The proof of the theorem is rather
trivial and only requires results from a junior level
probability course.

Finally, in Sec. 5 we work out the example of
Rutherford scattering in our framework.

do(v, ) 40
dQ

53

2. CLASSICAL SCATTERING SYSTEM

Throughout the remainder of the paper “ex” will
stand for either “in”” or “out.”” Let U, be a Borel
subset in [R3 x [R3 possessing the following properties:
(a) If (x('x’ ch) € Uex, then Vex 7 0; (b) if (xex ’ U(‘x) €
Uiy, then (Xox — Vexlo, Uex) € Uy for all 1y e R, Let
AN = (X oi R > R3| Xoo(f) = Xox + vest, 1ER,
for some (x. V) € Uey}. We think of the first 1R3 in
[R3 x [R3 as physical space, the second R?* as the
space of velocities and elements of A™ and A" as
the incoming and outgoing asymptotes of the system
we wish to study. Typical examples of U,, would be
R3 x (R? — {0}) itself and

{(x,v) €R3 x (R3— {0}) | x + tv £ O for V 1}.

In particular, if Uj, is such that it is contained in the
first set and contains the second set we say that A"
is standard.

Note that we have a natural action of “time’’ on
/X defined by Ty Xex(f) = Xex(t — 1), for 1, tye R,
Not€ also that /A has a Borel structure it inherited
from U,,.

Definition: A (classical 1-particle) scattering system
consists of a triple (/A™, At S) where A is as
above and S: /A — A js a bijective Borel mapping
which commutes with the time translations {T,: — o0 <
—o0}. Elements of A™ are called the “incoming
asymptotes” of the system A°Y, the “outgoing
asymptotes”” of the system, and S is called the
scattering operator of the system. S(X;,) is interpreted
as the outgoing asymptote of a particle when X, is
its incoming asymptote. Thus S is the analog of the
S matrix in quantum mechanics. When no confusion
should arise, we shall use S to designate the scattering
system.

The fact that S commutes with time translation
essentially says the scattering system is autonomous.
Note that S has the following nice feature. Let
v € R? be such that there exists x € R33 (x, v) € Uy,
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and let P, be the plane in [R? which is perpendicular
to v and which passes through O (€ R®). Finally let

AR = (X, € AP | X () = X, + 01,V 1
and x,, € P,}

and S, = S|/ . Observe that S is completely deter-
mined when we know the {S,} where v is described
above,

To obtain a general example of a scattering system,
consider the dynamical system governed by the
differential equation in [R3:

d’x

m ? = F(x, X),

2.1
where F is C’ on R® x R3. Let A" be the set of
affine mappings x;,: R — R3:t s x; + v, with
the following properties: (a) v, # 0; (b) there exists
a unique solution x() of (2.1) which satisfies

lim [ Xu(1) — x(®ll = 0,
t2—ow
lim

t—=—m

)

Vin —™ — Dl = 0,
AL

(c) there exists an affine mapping

Xout: R — R3:f amvs x4 + Coue?
such that

lim [ X,u(1) — x()]| = 0, (2.2)
totw
lim v — dx = 0. (2.3)
t—+c0 dt

Note that X, is uniquely determined by (2.2) and
(2.3). Let A" be the set of X, described by (c) and
let S:AM — A% be defined by S(X;,) = Xou- It is
clear that S is bijective and that it commutes with
time translation. It is true, but technically messy to
show, that A®™ and /At jnherit a natural Borel
structure from R3 x R3 and S is Borel measurable.
Thus (A™, A, S) is a scattering system.

In general, it would be difficult to determine A™
and A" from (2.1). However, in the case of the
Coulomb or gravitational problem, /A" is standard
and A" and S can be explicitly computed (see
Sec. 5). In fact, most reasonable scattering systems
will be such that /A'™ is standard.

3. THE CROSS-SECTION OF A SCATTERING
SYSTEM AND ITS PROBABILITIES
INTERPRETATION

One of the main reasons why one considers cross
sections of a scattering system (A", AU, S) is that

they are experimentally more accessible than the
scattering operator S. Roughly speaking, cross
sections tell us the directions into which parallel beams
of incoming particles are scattered by S. Thus our
first task is to define in a mathematically precise way
the notion of a beam of incoming particles.

Let (A", A® S) be a scattering system. We
shall say that the system is standard if /A™™ is standard.
For 0 # v € R?, let P, be the plane perpendicular to
v and passing through O. The impact set I, of the
scattering system for the velocity v is defined as
follows:

I,={x€P,| X:R— R:t w>x + tv
is an element of A"},

If A® is standard, I, = P, or P, — {0}.

Definition: Let (A®, A S§) be a standard
scattering system. An (infinite homogeneous) incoming
beam of particles with velocity v and intensity I is a
Poisson process Y, ; = Y on I, with measure /- 4,
where 2 is a (2-dimensional) Lebesque measure on I,.
Recall that a Poisson process with measure » on a
measurable space (M, B) is a function Y from B to
a space of nonnegative integer-valued random
variables such that: (a) Y(B), Be B, is a Poisson
random variable with mean »(B); (b) if B,, B,€B
are disjoint, then Y(B,) and Y(B,) are independent.?

Remark: It is not necessary to assume that the scat-
tering system is standard in order to define the notion
of a beam. We make this assumption for two reasons:
(1) Most physically interesting scattering systems
including Rutherford scattering systems (see Sec. 5)
are standard; (2) the definition of a beam when the
impact set is not P, or P, — {0} is more complicated
to state, and thus the essential idea of a beam may be
obscured by the added complexity.

Interpretation of Y: Observe first of all that Al
and I, can be canonically identified. Since Y{(-) will
be an atomic measure on I, with probability one,
supp [Y(-)] will be a subset of I, == A" which is
interpreted as the set of incoming asymptotes of the
particles in the beam. In particular, if B is a measur-
able subset of I,, Y{(B) tells us the number of particles
in the beam which have impact parameters in B.

We are now in a position to define the scattered
beam of direction. Let S? be the 2-sphere in R and
let Q be the canonical measure or S2 Define
dout: /AUt _, g2 by

dout(Xout) = vout/”vout” >
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where Xout(f) = Xout, + Dont" Thus dout(qut) is the
outgoing direction of X .

Definition: Let Y, ; = Y be an incoming beam of
particles with velocity v and intensity /. Let S, =
dyug ° S|/Avin. The Poisson process N, on S? is called
the scattered beam of directions where N, is defined by

N(Q) = Y[S;(D)]

for 0 a measurable subset of $2. N, is a Poisson
process on §% with measure I-5,(1) where S,(4) is
defined by

SMQ] = S (D).

N,(€) is interpreted as the number of particles in the
incoming beam Y which are scattered (by S) in the
direction Q. The cross section (measure) of S w.r.t. v
is defined to be S,(4) = o(v, -). Thus o(v, Q), Q < §?,
is the expected number of particles in the incoming
beam Y which are scattered in the direction Q, divided
by the intensity I of the incoming beam.

If o(v,') is absolutely continuous w.r.t. £ on
S2 — {v/||v|l}, then the Radon-Nikodym derivative of
o(v,*) w.rt. Q, denoted by do(V,)/dQ, is the
differential cross section of S w.r.t. v. The integral

do(v,) 4q)

s dQ
is called the rotal cross section of S w.r.t. v. It may be
infinite.

In most applications we also have spherical sym-
metry about the scattering center (which is O in our
case.) We shall indicate how this can be incorporated
in our framework. Let SO(3) denote the connected
component of the orthogonal group for R3. We have
a natural action of SO(3) on the set of affine mappings
of R into R3. In fact, if R € SO(3) and

X:R — R3:tw> x + 01,

a(v) =

then
RX:R — R3:t ww> Rx + (Ro)t.

We say the scattering system (AR A%, S) g
spherically symmetric (about the scattering center)
if A" and /A" are left invariant by SO(3) and

RS = SR
for all R € SO(3).

Theorem: If (A™, A°", S)is a standard spherically
symmetric scattering system, then
Ra(v, ) = o(Rv, *) 3.1

for all R € SO(¢), where Ru, u a measure as S2, is
defined by
Ru(X) = (R1Z)

for £ a measurable subset of S2. In particular, if
Ry = v, then
Ro(v, ) = o(v, ),
i.e., o is invariant under the action of such R.
Proof: Let X be a measurable subset of S2. Then
Ro(v,2) = (v, R'Z) = A(S;(R7'))
= H(RS)T(D)} = MSx(E)
= g(Rv, 2).
Since 2 was arbitrary, this implies (3.1).

Corollary: Let (A™, A S) be as in the above
theorem and assume that the differential cross section
exists. Then o(v) depends only on |¢| and thus only
on the “energy” E = }llv]|% In this case we write
o(E). (We are assuming mass has been normalized to
be one.)

Proof: The proof follows directly from (3.1) and the
fact that €2 is invariant under the action of SO(3).

Remark: 1f we choose spherical coordinates (8, ¢),
-r< @< 7 0L 6L, on S? such that (0, 0) is
the forward direction vf||v|, then the coordinatized
differential cross section da(v; 6, ¢)/dQ in the spheri-
cally symmetric case will depend only on E = } |jv)?
and 6. We thus write do(£; 6)/d(0.

Note that the spherical coordinates we choose on
S? depend on the forward direction and thus the
function do(E, 0)/dQ only tells us how much the
incoming particles were deflected from its initial path
by the scatterer.

4. AN APPROXIMATION THEOREM
Let (A, A", S) be a standard scattering system
and let v (# 0) R® be fixed. Let Y, ; be an incoming
beam of particles. Let D, be a nested sequence of
disks in I, such that

lim

(aadd 2'(ﬂjn)
Observe that J D, = I,. We can associate a finite
beam of incoming particles with each D, in the follow-
ing way. Let Y5, -, Y? be uniformly distributed
random variables with values in D, which, if you
recall, can be thought of as a subset of A It is
clear that the collection {¥7, - - -, ¥;} may be thought
of as a finite incoming beam with impact parameters
in D, and intensity 7,,. We also have a finite scattered
beam of directions dssociated with D, In particular,
let £ be a measurable subset of S? and let

N0 ) =3 1alS.YD),

=liml, =1

n—+w
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where y5 is the indicator of X. Thus N, (v, X) is the
number of particles in the incoming beam {Y}, -
Y,} which are scattered in the direction Z. Let
o, (v, Z) = I;'E(N, (v, X)), where E( ) denotes the
expectation functional.

Theorem: For each measurable ¥ < §2, N, (v, ¥)
converges in distribution to N(v, Z), where N(v, ¥)
is defined in Sec. 3. Moreover,

lim o, (v, 2) = o(v, 2).

Thus, for sufficiently large n, (Y}, -, Y5}, N, (v, ),
o,(v,*)) is a “good’’ approximation to

(Yons Nv, ), 0(v, "))

Remark: Note that N(v, Z) may be infinite, but
that does not matter.

Proof of the theorem: Observe that N, (v, X) is the
sum of independent Bernoulli random variables with
A NDY

P =E J =
Thus
limnP, =1 XS;'(2) = I - o(v, ),

which may be infinite. Since nP, = I,0,(v, X), we
see that

(4.1)

lim ,(v, 2) = o(v, X).

From the Poisson approximation to the sum of
Bernoulli random variables,* we conclude that
N,(v, X) converges to a Poisson random variable
with mean [-0o(v, X), ie., N,(v, X) converges in
distribution to N(v, X). This completes the proof of
the theorem.

In a realistic situation we actually would have a
finite beam with a large number of particles #. Thus,
looking at the above theorem in another way, we see
that {Y, ;, N(v, ), o(v, )} is a good approximation
to({YL, -, Y}, N,(v, ), 0,(v, ), and, since { Y, ;,
N(v, *), 6(v, *)} 13 analytically more tractable than
(Y, .-+, Y™, N,(v,),0,,")), we use it as the
theoretical model which is compared with experiment.

5. RUTHERFORD SCATTERING®

Consider the dynamical system governed by the
following differential equation in R3:
d’x
m— = —a grad (V),
e grad (V)
where V= |x|t=r1, m>0, and «€R. For
example, « = Z;Z,e? and thus ar? is the Coulomb
potential when the particles being scattered have

finite point mass m and charge Z,e and the “scatterer,”
located at O, has infinite point mass and point charge
Zj,e. When Z, and Z, have opposite sign, i.e., when
the two particles attract one another, A™ = A%t =
the set of nonconstant affine mappings from R to <3
which do not pass through O. When Z; and Z, have
the same sign, i.e., when the two particles repulse
one another, A" = A = the set of all non-
constant affine mappings from R to [R3.

To be explicit, we shall take « > 0. Choose
v (# 0) € R3 In the impact plane I, = P,, choose
polar coordinates (b, ) with the origin of the co-
ordinate system being O. The choice of polar axis is
immaterial since we have rotational symmetry in I,.
The impact parameter of an incoming asymptote,
X:R — R3:t av> x, + vt € A", is just the radial
coordinate of x, in I,. Let (0, ¢), 0L 6 <,
—7n < @ <, be the usual spherical coordinates in
S?%such that the forward direction v/)|v) has coordinates
(0,0) and the direction of the polar axis in I, has
coordinates (}m, 0). 6 is called the scattering angle.

In Newton,! Chap. 5, it is essentially shown that
if & > 0 is the impact parameter of X € /A", then

Sv(X) = (07 (P), (51)
where 0, 0 < 6 < =, is the solution of
b = (a/m [v[[*) cot (36). (5.2)

Thus, for X a measurable subset of S2 contained in
the complement of the forward direction, we have
that

o(v, Z) = AS;}(Q)) =f _ bdbdy.
S0 Q)
Making the following change of coordinates,

b = (a/m |v]|?) cot (30), ¢ = ¢,

and letting X = {(0, ¢):0 < 0 < 7, (0, ) € Z}, we
obtain

o(v, X) =f
S0
f 1/ o \cos(ih1 1
= —‘( ) N - . de
£ 2\m |o))¥) sin (30) 2 sin (36)
=f 1( “ )2 0
= 4\m |[ol|*/ [sin (}6)}*

=L ali(m (Ijlcvllz)z[sin (1%0)]4 -

The Radon-Nikodym derivative of o(v, ©) w.r.t. Q,
i.e., the differential cross section of S w.r.t. v, is

=)

bdbdy
)

-1

dg
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This same formula holds when « < 0, but (5.1) has to
be modified slightly in the ¢ coordinate and the sign
on the left-hand side of (5.2) must be changed.
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The Noether theorems were derived by Noether for n-dimensional Euclidean spaces, but they have
been used by many writers in relativistic theories where the geometry is not Euclidean. We give a deriva-
tion of the Noether theorems, assuming only a Riemannian space and following the method used by
Noether as closely as possible. This requires new definitions of total variations for fields and integrals
since a covariant total variation for tensor fields is required. The results have been applied to electro-

magnetic fields.

1. INTRODUCTION

In 1918, Noether! published two theorems on
invariance of the integral in a variational problem in
which she showed that invariance with respect to a
group of transformations implies existence of certain
identities. Since that time the Noether theorems have
been applied to various physical systems to study the
correspondence between symmetries of the system and
existence of conservation laws.2 The Noether theorems
were derived for Euclidean spaces, and so, strictly
speaking, they should only be used for problems set
in Euclidean spaces. Despite this fact, many authors
use the Noether theorems in relativistic theories where
the geometry is not Euclidean. Arguments intended to
justify such applications have been given by Anderson,?
Trautman,? and others, but these arguments do not
produce a true mathematical extension of the Noether
theorems to Riemannian spaces in the opinion of this
author.

In this paper it is shown that such an extension can
be accomplished. To do so, one must carefully dis-
tinguish between point transformations and coordi-
nate transformations.” In connection with this, we
find that the role of the metric tensor must be clarified.
Finally, this attempt to parallel the original derivation
of the Noether theorems requires some new ideas
about variations of vector or tensor fields. This sug-
gests new possibilities for variational principles in

relativistic theories. Some results on variational
principles will be given in a later paper.

2. REVIEW OF THE NOETHER THEOREMS

In the following discussion we shall consider an
integral

Wlu] =fde(x“, u’, 0,u") (2.1)

Q
over a region € in R* Greek indices «, 5, ¥, - - - have
the range 1, 2, 3, 4, and Latin indices /, j, k, * - - have

the range 1, - - -, n. Functions u’(x*) are real valued
with continuous second derivations.
Infinitesimal transformations
3= x"+ Ax% (2.2)
(3 = u'(x*) + Au’ (2.3)
are introduced. The total variation Au’ is related to
local variation

ou’ = i@'(x*) — u'(x%)
by the equation
Au' = du’ + 0,u'Ax* (2.5)
The usual summation convention is employed in (2.5).
The total variation of integral (2.1) is defined by

AW fde( '18) fde(x ué —) (2.6)

(2.4)
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This same formula holds when « < 0, but (5.1) has to
be modified slightly in the ¢ coordinate and the sign
on the left-hand side of (5.2) must be changed.
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It follows from (2.6), by use of (2.2), (2.3), and (2.5),
that

0 oL
A — ou' + — | LAX* &
W = fdx[ u +3x( X +a(au) u”

2.7
where
§£=9£._i( aL.). 2.8)
dut  out  Ox*\A(0,u)
If we define
oL ;
T% = L6% — ——— dyu’, 2.9
B AFYPIRN sY 2.9)
then (2.7) can be put in the form
AW = fdx — (A’ — du'AxF)
+dea (T?‘,,Ax” oL Au) (2.10)
o 2(0,u’)

The Noether theorems follow from (2.10).
Let indices 4, B, C, - - - have the range 1,--+, N
in the following theorems:

T /1eorem 1: Suppose functions &%(x*, u’, d,u'),
w5 (x*, ut, 0,u), and yA(x ut a ut) exist such that for
arbitrary parameters €, - -+, " we have

AW =f dxaa(eA‘yz) )
Q

when Ax* = €& and Au? = e?w?,. Then N relations
exist of the form

2.11)

3 Z oL X
(&0 — 0l = = ( St 5o )A—yA).

(2.12)

Theorem 2: Suppose linear operators A%, 1%, and
% exist such that

AW = f dxd,(A%[A$4]) (2.13)
Q

for arbitrary functions A¢“, which vanish on the
boundary of Q, when

Ax® = Y2[A¢4] and Au’= O [As?].
Then N relations exist of the form

@*’[ ] T*«[a " @] =o.
Su’ Su*

Operators ©% and Y%
and Y%, respectively.
The Noether theorems and the variational formula
(2.7) will now be extended to Riemannian spaces to
produce covariant forms of (2.12) and (2.14). The

(2.14)

are adjoints of operators ©%

purpose of the following derivation is to show that
a covariant form of (2.7) can be produced by argu-
ments very similar to those used in producing (2.7),
with some interesting changes in the concept of a total
variation.

3. COYARIANT DIFFERENTIALS AND
VARIATIONS

We shall assume X is a 4-dimensional Riemannian
manifold with points x = (x%, x!, x2, x¥) = (x*) and
metric g,5. Functions I';, are the Christoffel symbols
corresponding to metric g,;. At each point x € X' we
have a tangent space with basis {I,(x)}. Basis systems
at (x*) and (x* + dx*) are related by

L(x* 4+ dx*) = L(x*) + I'}(x*) dx’L(x*)
+ o(dx)I;(x%).

To first-order terms in dx*, we have

L(x* + dx®) = L(x®) + L) dx’L(x?).  (3.1)

In the following calculations only first-order terms
in differentials or variations will be retained. Assume

g = |det (g,p)l # 0 on X,

Each point x € X has coordinates (x*) in some
coordinate system. No coordinate transformations
will be introduced in the following. We shall employ
point transformations such as (2.2) above, but such
transformations must not be confused with coordinate
transformations. This distinction is important if the
variation Ax* to be used is to be correctly interpreted
in the following.

Let A be a vector field on X. Then

A(x) = A*()L(x),
and the covariant derivative of A is given by
VyA* = 0,4% + T'5,4%
It is important to observe that
A(x + Ax) — A(x) = VAL (x).  (3.2)

Hence, differentials VA* = VﬁA"‘Ax” represent com-
ponents of a vector increment

AA = A(x + Ax) — A(x).

The differentials dA* = 9,4* dx? represent changes
in component functions A* as we move from point (x*)
to point (x* 4 dx*). These two kinds of differentials
are related by

VA* = dA® + T'5,A* dx".
Hence VA® == dA* in flat spaces, but these differentials
are generally different.
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Assume that A is a vector field on X and infinitesi-
mal transformations

X = x* + Ax%, 3.3)

A%(F) = A%(x) + A(4%) 3.4

are given. Equation (3.3) defines a point transforma-
tion in X. We shall interpret (3.4) as introducing a
new vector field B on X, where

B(¥) = AXHL(%).

B(x) — A(x) = 0A(x) (3.6)
is a vector local variation. We may express (3.6) in
terms of components as

A%(x) — A%(x) = 04%(x)

if 04 is defined by dA(x) = 04*(x)[,(x). Hence, 04*
may be interpreted either as local variations of
components A* or as components of the vector
variation JA.

We now define a vector total variation by

AA = B(x + Ax) — A(x).
Adding and subtracting B(x), we find
AA = VB,(x) + 04°L(x).

Up to first-order terms in d4* and Ax*, we have
VB* = VA*so
AA = (VA* + AN (x).

3.5)
Then

Define components of AA by AA = (A4)'L(x).
Then

(AAY* = 84* + V,A*Ax". G.7)
For A(4%) as defined by (3.4) we have

A(A%) = 0A% + 3, A*Ax*, (3.8)

Hence (AA4)* = A(4%) in flat spaces, but in general
these total variations are different. The total varia-
tions A(4%) are not components of a vector, and so
they are not covariant quantities. The variations
(AA)* are covariant, however.

Similarly, for higher-order tensors, we define total
variations by rules such as

(Ad),, = 04, + V,4,,Ax*
when variation 4,,(¥) = 4,,(x) 4+ A(4,,) is given.
4. VARIATION OF AN INTEGRAL

Assume A is a vector field on X and L(x, A, VA)
is a scalar function of point x, vector A, and covariant
derivative VA. Integral

WIA] = L dxgiL(x, A, VA) @.1

will be considered. Assume that infinitesimal trans-
formations (3.3) and (3.4) have been given and varia-
tions of A and VA have been defined as in Sec. 3. We
define the total variation of W by

AW = J'_ dz[g(®)PL(%, B, VB)
Q
- f dx[g()EL(x, A, VA). (4.2)
Q
It is assumed that dg,; = 0. We shall now derive a

formula for AW to replace (2.7).
Assume g > 0 on X for convenience. Then

ool = sl + dgt Eax (4
Using dg/0x* = gg*?0,8,5, we find
[eD1F = g1 + 1g0,8,,0%%).
Since g*0,g,, = 2I'%, , then
g1 = gl + T2AxY). (4.4)

Now we use dx = dx(l + d,Ax%) and the result (4.4)
in (4.2) with L(x, B, VB) = L + AL. Then

AW = fdx(l + 3, Ax)(1 + T4 AxMe L + AL)
—J‘dxgéL.
Q

4.5)

The equation simplifies to

AW = f dxg}(LV.Ax* + AL).
Q

Now,
AL = L(x, B, VB) — L(x, A, VA).

So,
AL = 9L Aye 4

= La (047 + V, AAx?)

oL
oV, A%

+ O(V,A%) + V,V, APAx*Y.

Thus,

oL
AL = V,LAx* 4+ 9L 545 V( aAﬂ),
g YR (VA%
(4.6)
where
oL

3(V¢A” )

V,L = v, 4% +
i F A” !

oL _ oL ( oL )

64 a4*  "\a(V,an)

Substitution of (4.6) in Eq. (4.5) yields, after some

Vl(VaAﬂ)

and

4.7)
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rearrangement,
oL
AW = f dxgt 2= 54
Q § 0A®
3 B JL ,,)
dxg*V_{ LA ———04"). (4.8
+L xg ( X +a(VaAf’) (4.8)

Equation (4.8) is clearly the covariant equivalent of
(2.7) and could have been guessed in advance. It is
interesting, however, that a derivation of (4.8) along
lines similar to those leading to (2.7) requires some
new ideas about variations of vector or tensor fields.

5. COVARIANT NOETHER THEOREMS
From (4.8) new forms of the Noether theorems
follow easily. First observe that again we may define
a tensor

% = Lot — 9Ly g
g bAV,A%)

and replace (4.8) by

AW =fdxg% oL
o 84¢

+f dxg%Va( “Ax* +
Q

44°*

oL
a(V,A")

(AA)”). (5.1)

Theorem 3: Suppose 3r vectors §,---,§,,
N, s Ny Yiso 't Yy €Xist at each point xe X

such that for arbitrary real numbers ', - - -, €, if

Ax = €', and AA = ',
then

AW = f dxg? div (ey,).
Q

Let E, = Eilz(x)a 0 = Ni(x), and v, = yiL(x).
Then r identities exist of the form

oL . oL o
oo (VA - ARS Va( %&x + A M — Vk)~
(5.2)

Proof: The proof follows immediately from Eg.
(5.1) by using the hypotheses that

Ax* = £, (AA)P = pfet

and arbitrariness of parameters € and region Q.

Theorem 4: Assume linear differential operators
A, Y¢, and Of, k=1,---,r, exist such that for
arbitrary functions A¢*(x), - - - , Ad"(x) we have

AW = j dxgtV (AZAF)
Q

when
Ax* = YYAS*] and (AA)* = OIAS .

Then r identities exist of the form

L oL
@:l[@] — T:ﬂlié_A’l VﬂA;‘:‘ = (), (5.3)

where ©F* denotes the adjoint of O}.

Proof: The proof follows from (5.1) using the
hypotheses given for variations Ax* and (AA4)*.

It would be reasonable at this point to present
applications of Theorems 3 and 4. One such applica-
tion has been made by the author® to electromagnetic
fields. The calculations are lengthy, and the result is
essentially that of Bessel-Hagen,? with the expected
result that the symmetry group involved depends upon
the choice of metric g,5. The results are similar to
conclusions given by Fock,? although his conclusions
did not stem from the Noether theorems.
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The high-temperature expansion of the spin-} XY model is shown to be particularly simple when the
Hamiltonian is written in the second-quantization form. By aid of a few simple rules, the partition
function and susceptibility are easily evaluated to high orders.

I. INTRODUCTION

We present here a method particularly well suited
for obtaining the critical properties of the spin-} XY
model by high-temperature expansions. The high
temperature expansion of the XY model has been
previously approached by others' as an anisotropic
limit of the Heisenberg model. This approach entails,
however, some unexpected complications,and as a
result the critical properties have not been estab-
lished until recently.

The method we propose is to write the Hamiltonian
of the XY model in terms of the usual raising and
lowering operators. The high-temperature expansion
of the partition function then gives rise to graphs or
clusters in the usual way. But by having the Hamil-
tonian in the second-quantization form, we have
reduced number of graphs considerably and the trace
becomes quite trivial to evaluate. Further, we can
obtain the fluctuation in the long-range order and the
susceptibility in the perpendicular direction directly
from the partition function series’*

In our first paper we considered an applica-
tion of this method to the cluster expansion of the
Jastrow function found in the models of liquid *He””

1II. XY MODEL

The XY model is a limiting form of the anisotropic
Heisenberg model and is usually written as

¥ = -2J(Z)(S,‘§,S: + S7.52) §))]
mn.
where by (mn) we mean that the sum is over the
nearest-neighbor pairs only. The physical relevance
of the XY model as a model for liquid helium near
lambda point or for certain ferromagnets near the
critical temperature is already discussed elsewhere.®*
We shall restrict our discussion here to the case of spin-
4 only.
Consider the spin operators

S*¥=5%4iS* and SIS7 =S+ 4.

The commutation relations for S* are very simple.

61

If S} and SF are on the same site of a lattice (i.e.,
| = j), then they act as Fermi operators. If Sf and
S;® are not on the same site of a lattice (i.e., i # j),
then they act as Bose operators. In terms of these
operators the Hamiltonian has the following simple
form:
X=-J3 StS;.
{(mn)
For the high-temperature expansion it will be found
more convenient to work with another set of opera-
tors defined as

— 10 t - 00
N, = stsy = (19), NESS+=< ) 3
i (ml i s D4 o1k 3

Some of the more useful algebraic properties of N
and N' are:

@

(i) N and Nt are idempotent.

(i) N and N are orthogonal to each other.
(iii) All the N’s and N'’s commute.
(iv) The trace of both N and N' is unity.

These four properties will be found most useful in
generating the high-temperature expansion graphs of
the partition function and in evaluating the successive
traces.

III. PARTITION FUNCTION

We shall write the partition function in the
customary way

Z=Tr[l - pR+ p2*}2— -]
= Tr [1 + %K"P"/n!:l,

n=1

C))
where
K=JKgT and P=3 S}S;.

{(mn}

The trace is over the spin space 7,

I=1x%x1x1x--"%x1,

where 1 is the unit matrix of rank 2. To obtain physical
quantities like specific heat, entropy, we need,how-
ever,

0 n * 0
mMZ=NIn2+) LS

n=1 n!

, &)
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where®
Te* =27 x O(N) in Tr P".

As in the high-temperature expansions of the Ising
and Heisenberg models,® Tr P* will generate a
variety of connected and disconnected graphs or
clusters. But,unlike the Ising and Heisenberg models,
the XY model will have only a subset of the total
graphs In drawing a graph, it will be convenient to
assign a direction to (as if a forward momentum):

Q- =
SrS-=m->n.

The line between the two lattice points m and # is by
definition the nearest-neighbor distance. Since S are
themselves traceless, all terms in Tr P* will vanish
except those which have %, SF, S£, - - - paired up in
an even number of ways with ST, ST, S, « - * (i.e., the
nonvanishing are those which can be expressed
entirely by a combination of N’s and N™’s). A few
nonvanishing terms are graphically represented in
Fig. 1. A few words about graphology: The assign-
ment of the arrows shows that, for every arrow
pointing towards a vertex, there is another pointing
away from it if the total momentum is conserved
at the vertex. In fact, nonzero graphs always satisfy
this requirement (and once this point is understood,
the arrows can be altogether suppressed). It will be
then apparent from the rule of the “momentum
conservation” that the only allowed graphs in the
high-temperature expansion of the partition functions
are polygons.”

We shall now show the matrix elements of a few
low-order graphs. The matrix elements for Fig. 1(A)
are

557 - S8y = N.N,

whose trace  (in the sense of our definition) 1is
2-2. The matrix elements for Fig. 1(B) are

S7S7 " SISy - SiS; = N,N'N,,

0 AL 00

(D)

OFAZAPA

Fic.1. Z graphs.

and

S}S7 - S}S; - StS; = N,NNL.
Since ij, jk, ki are constrained to be nearest-neighbor
pairs, N,N/N} and N,N]N, must correspond to an
equilateral triangle. N,NJN! and N,N,N] both have
an identical trace value of 273, It will be seen that in all
cases the trace will produce a simple factor in the form
of 2-",where v is the number of the vertices of a graph.
The matrix elements for Fig. 1(C) are

N,N,N,N! + 4N,N,NIN! + N,NININT.

The coefficients 1, 4, and 1 represent the number of
ways a square can be formed by the combinations of
N’s and N'’s. We shall term these numbers “occur-
rence factors.”” The occurrence factors are quite
evidently combinatorial factors associated with some
particular combinations of N’s and N'’s for a given
graph.® For most of the graphs their occurrence
factors can be very simply obtained. In Appendix A
we give a few examples. Rules for drawing the graphs
contributing to the partition function are thus all
self-evident. We shall write them down here without
proof:

(i) The nonzero terms of Tr P" are those which
correspond to polygons.

(ii) Those polygons, furthermore, must have an
even number of lines at all the vertices.

(iii) At each vertex, momentum is conserved (for
every arrow pointing towards a vertex, there must be
one pointing away from it).

(iv) The trace of a graph yields a factor 2-%, where
v is the number of the vertices of the graph.

According to these rules, then, it is not possible
to include, for example, the graph G(11) in 5th order
where by G(11) we mean the graph number 11 listed
in Table I. The same shadow graph can, however,
occur at 6th order (see Table IIT).

In Tr P", the trace and the sums contained in the
P’s are interchangeable. Hence we can write, for
example,

Tr* 3 N,N,N, = 3 Tr* NN,N{ = 2°Nqq’,
A A

where g is the coordination number and ¢’ is the
number of ways a third point can be placed to com-
plete an equilateral triangle, given that there is a
pair of nearest-neighbor points in the lattice (¢" = 4
for fcc). It is customary to express the result of such
sums in terms of the lattice constants of Domb and
Sykes.® In this instance,

Ngq' = 6Npg,
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TaBLe I. Shadow graphs -are enumerated according to the
classification of Baker et al. (see Ref. 9).

IRV PN
ol x| vian
oo o X
M ALY AN
alels oo
o Bl
Z/v\ ZD FE% 76@ TA

where p; is the lattice constant for triangle and the
numerical factor 6 is the random-walk factor for the
three-sided polygon. These numbers, which will
enable us to express our results in terms of the lattice
.constants, are tabulated in Table II. They are inde-
pendent of the lattice of a system and are quite
systematic.
Finally, the partition function is

InZ— Nin2
= (K}2) Tr* P2 + (K¥3NTr* P2+ -+ -, (6)

where, in Table II1, terms which contribute to the
above expansion are shown with the graphs'® and the
occurrence factors. It would appear that representing
a graph by the combinations of N’s and N'’s is un-
necessary, since the final trace depends only on the
number of the vertices of a graph. For the partition
function the total sum of the occurrence factors is,
in fact, sufficient. It will be shown later, however,
that, for physical observableslike the perpendicular
susceptibility, the knowledge of the decomposition
is quite necessary.

The high-temperature expansion of the partition

function for the general lattice is given below:
InZ—-NIln2
= (K¥2D[0.5{G(D}] + (K*/3N[L.5{G(3)}]

+ (K*/4D[0.5{G(D)} + {G(D)} + 3{G(6)}

+ L5{G(1, D} + (K¥/5D[7.5{G3)} + 5{G(7)}

+ 7.5{G(12)} + 7.5{G(1, 3)}] + (K®/6!)[0.5{G(1)}

+ 3{G(2)} + 6{G(3)} + 4.5{G(4)} + 5.25{(G(5)}

+ 30{G(6)} + 16.5{G(11)} + 15{G(13)}

+ 30{G(26)} + 22.5{G(29)} 4+ 7.5{G(1, 1)}

+ 7.5{G(1, 2)} + 22.4{G(1, 4)} + 45{G(3, 3)}

+ 11.25{G(1, 1, )}] + (K"/7TH[31.5{G(3)}

+ 57.75{G(N)} + 77{G(11)} 4 131.25{G(12)}

+ 35{G(14)} + 31.5{G(15)} + 36.75{G(16)}

+ 57.75{G(25)} + 52.5{G(30)} + 105{G(54)}

+ 105{G(60)} + 78.75{G(76)} + 105{G(1, 3)}

+ 78.75{G(1, 12)} 4 52.5{G(2, 3)}

+ 157.5{G(3, 6)} + 78.75{G(1, 1,3)}1 + -+, ()
where by {G(n)} we mean the lattice constant of the
connected graph G(n) listed in Table I and by{G(n, m)}

the lattice constant of the disconnected graphs G(n)
and G(m).

TasLE II. These numbers connect the directed graphs of the XY
model and the corresponding shadow graphs.

1t 0 A
As o [V
0 A D
A
]

N

[T
O 12
4 AA 72

S>>
N

0 8

ANAs Nz O
AVEREE N B *
5 10 Al 12 4

& The curved lines indicate that the arrows are in the opposite directions.

b The paraliel lines indicate that the arrows are in the same direction.
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TasLE III. Occurrence factors of the XY model.

Order ;Graphs Occurrence factors

Order Graphs Occurrence factors

2 NN?

NNN' + NNIN

NNt

AN NN + NNINY)

NNNN' + 4N NN'N' 4+ N NININ
INNT-NNY

S(NNN' 4+ N NN

S(NNNN' + 6N NNINt + NNININY

NNNNN'+1INNNNINt 4 1IN N NININ?
+ NNINININT

10(N NNt + NNINT)- N N?

NNt

6(NNN' + NNINT)

3(NNN'+ NNINY)

NNN' 4+ NNINt

2ANNNN' + 4N NNIN' 4+ NNININY
30NNT-NN?
IINNNN' + 12NN NNt 4+ NNININD
6(NNNN' + 8SNNNINt + NNININY
6(NNNN'+5NNNINt + NNININD
IINNNN' 4+ 6NNNINt + NNININY
30N NNt + NNIND - NNt
6NNNNN' 4+ 19N NN NNt

+ 19NNNININT + N NTNININY
3(NNNN' + 19NNNN'Nt 4+ 19NNNTNINT

+ INNINININY)

IS(NN'- NN'-NNY

NNNNNN' + 26NNNNNIN' + 66NNNNTNINT
+ 26NNNINININT + NNINTNINING

AA 10(NNNt + NNINY) - (NNNT + NN'NY

15(NNNN' 4 4NNNINT + NNINTNT) - NNT

IV. FLUCTUATION

For the Ising and Heisenberg models one usually
computes the parallel susceptibility, from which
the critical temperature is precisely estimated. In
the XY model, as in the Ising model,’ one has the
possibility of calculating the susceptibility both in the
parallel and perpendicular direction. It may be sus-
pect that in the perpendicular directions, where the
spins are only weakly correlated, the susceptibility
may not even be singular at the critical temperature.
It will be, thus, more advantageous from the point
of high-temperature expansions to study the suscep-
tibility in the parallel direction.

The susceptibility in the parallel direction is

32
x" = KBT '671_2 ln Z“ IH==0 s (8)

where
Z, =Trexp —-ﬂ(Je —H z S,”-‘).

But since the interaction term and the Zeeman term
do not commute, it is very difficult to evaluate the
high-temperature expansion of the above equation.
There is, however, another physical quantity, the
fluctuation in the long-range order, which overcomes
this difficulty and thus can be more easily calculated.
When both terms in the Hamiltonian commute, the
fluctuation is identical to the susceptibility.1?
The fluctuation Y may be defined as
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N N
Y =3 (SiS7) = 1 + 2 (Si8D)
r=1 r#0
1
N

where by the prime on the sum we exclude the diagonal
terms r = ¢ and

(AB) = Z™ Tr AB exp (—fX).

=1y Lysissy, ©)
4 rt

In terms of the raising and lowering operators, we
can write

1 2
Y == =37 (SESH . 10
1+ 23 s (10)
(SFS}) and (S;S;) are necessarily zero since X
does not contain such terms.

Now if we define

3 =Trexp K(P + 24R), (11)
where
R =3'S;S;,
rt
then
1 110
Y==14—=—==MI3,l 12
4[ +NK3/1 3!;.0] (12)
Thus, In 3 can be expanded as in the partition function,
1 a 2 0 n
— —1 o == Y=—Tr*P"°R. 13
NK 21 1 3fico N,gl P (13)

The above expression looks very similar to the
expression (5) of the partition function. The relation-
ship between the two is as follows: Consider Tr P+
of the partition function. If we relax the restriction
on one of the sums contained in P’s (where the sums
are limited to the nearest-neighbor pairs), so that now
one sum is over any pairs, then we obtain precisely
Tr (P"R) of the fluctuation. Thus, to obtain graphs of
nth order of the fluctuation,!® it is sufficient to con-
sider only the graphs of (n 4 I)th order of the
partition function and to transform one edge of each
graph to any arbitrary length. For an n-sided graph
(i.e., nth-order Z graph) there are » ways of trans-
forming it, and the occurrence factor associated with
the Z graph is distributed equally among the n new
graphs (some of the graphs may be the same). The
trace factor is still unaffected since it depends only on
the number of, not the length between, the vertices
of a graph. The following examples will illustrate
the above transformation.

Example 1: Consider the graph 1(A), which is the
2nd-order npartition function graph. To get the
corresponding first-order fluctuation graph, we are to

O-(:O
JANRIEVAN

)

A(?*’/Q\«L AVAREVAY,

(€

FiG. 2. The process by which Y graphs are generated from
Z graphs.

make one line arbitrary in length. There are two
ways this can be done. But in this case it is not
possible to do so, since each is constrained by the
other to be strictly of the nearest-neighbor distance.
Thus we have for first-order fluctuation exactly the
same partition function graph with the same occur-
rence factor [see Fig. 2(A)].

Example 2: Consider Fig. 1(B), which is the third-
order partition function graph. The second-order
fluctuation graph can be obtained from this by making
one side of the triangle arbitrary in length. There are
3 ways this can be done, but each of which produces
the same chain of 2 lines as shown in Fig. 2(B). Since
the chain of 2 lines is the only new graph formed,it
will “inherit’” the entire occurrence factor of the
triangle of the partition function.

Example 3: Consider Fig. 1(F) which is
Sth-order 7z graph . This generates 4th-order Y
graphs as shown in Fig. 2(C). The coeflicients 1, 2, 2
indicate the number of ways the new graphs can be
made from the Z graph. Now if the occurrence factor
of the Z graph is x, then the occurrence factors for
the Y graphs are, in the order of appearance, }x,
Zx, and Zx.

Thus from these exampies the following points will
be self-evident:

(i) Y graphs as well as their occurrence factors can
be generated directly from Z graphs.

(ii) There are many more graphs in the fluctuation
than in the corresponding order of the partition func-
tion. (See Table IV.) Therefore,it is reasonable to
expect that the behavior of the fluctuation series is
much more satisfactory than that of the specific-heat
series. (Table V shows the comparison in the numbers
of graphs.)
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TasLE IV. Fluctuation graphs are obtained directly from the Z ~ TABLE V. The number of graphs. The two numbers in a paren-

graphs by the elongation process explained in the text. thesis represent the numbers connected and disconnected graphs,
respectively.
Partition Function Fluctuation
Order Partition Function Fluctuation
Order Z Graphs Order Y Graphs
; (l)g), g; 11,0
> 11,0
2 0 1 0 3 1(1,0) 4§3, 1;
: b My
s 5(19, 6
3 A 2 /\ 6 17(12, 5) 64(49, 1)5)
; SRR
, 464,123
4° L—_l 3 /\/ 9 159(114, 45) ( )
i
s O 4 FAVAN 27 =} + K[05(G(D}] + (K22)[0.5{(GR)}]
N sA+2 Al + (K*3DI0.5GW)} + {GQ)} + 0.75(G(S))
+ 1.5{G(1, D} + (KY4DHG2)} + 4.5{G(3)}
Ay, N+e/N+2/N + 3{G@)} + 2{G()} + 26N} + 1.5(G(10)}
+ 1.5{(G(1, 2)} + 3{G(1, 3)}]
A 2A+3A + (K*/5D[0.5{G(1)} + 3{G()} + 6{G(3)}
. + 4.5{G(4)} + HG(5)} + 30{G(6)}
+ 5.5{G(N} + 5{GO)} + 5{G(10)}
6° O 5° /\/\/ + 5.5{G(11)} + 5{G(13)} + 5{G(15)}
AA AN + 5{G(16)} + 3.75{G(22)} + 7.5{G(1, 1)}

+ 7.5(G(1, 2)) + 3.75{G, 5)} + 7.5{(G(1, 6)}

><] > +a/AA + 7.5(G(2, 3)} + 11.25{G(1, 1, D}]

+ (KY6D[2{G2)} + 25.5(G(3)} + 16.5(G(4)}

+ 12.5{G(5)} + 22{G(6)} + 50.75{G(7)}
L a/Nrell + 27{G®)} + 19.75(G(9)} + 30.5{G(10)}
+ 44{G(11)} + 56.25{G(12)} + 8.25{G(13)}
[V 2/\/()*2/\@_*2@ + 24.125{G(14)} + 18{G(15)} + 29.25(G(16)}
é/ +2N + 15{G(20)} + 7.5{G(21)} + 15{G(22)}
+ 15{G(24)} + 16.5{G(25)} + 30{G(28)}
4N/ +2 + 15{G(30)} + 15{G(33)} + 15{G(34)}
+ 15{G(40)} + 15{G(41)} + 11.25{G(52)}
N &/ 2L\ +3[ ) + 11.25{G(1, 2)} + 71.25{G(1, 3)}
N + 22.5{G(1, 4)} + 15{G(1, 5)} + 30{G(1, 7}
+ 11.25{G(1, 10)} + 22.5{G(1, 12)}
# Graphs which are unchanged are omitted. + 7.5{G(2, 2)} + 30{G(2, 3)} + 22.5{G(2, 6)}
+ 22.5{G@3, 5)} + 11.25{G(1, 1, 2)}
(ili) Y graphs are more often open graphs and, +45{GQ, 1,3 + - (14

since open graphs have much larger values of the

lattice constants, we may also expect that the fluctua- VpggEE%lﬁg%iilglsg}g é%glN{E

tion series to settle down more quickly than the

$pecific-heat series. One can also obtain the susceptibility in the
For the general lattice, the fluctuation series up to  perpendicular direction from the partition function

6th order is series. The susceptibility is defined in the usual way
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az
AL = KBTEI?ln Z,

where
Zl=Trmp—ﬁcﬁ—112sa.

Since the interaction term and the Zeeman term
tommute, we can write the susceptibility per spin as

KyTy, =+ SE v prge, (15)
N n=on '
where
N
Q=355 =3N,. (16)
r= r

We shall regard S, S, as a “bubble” (loosely in the
sense of an electron in a Fermi sea) and graphically
denote it as shown in Fig. 5(A). Since Q does not
connect any pair of points in the lattice, a bubble or
a combination of bubbles is the only kind of graph
that Q can generate. The effect of Q in Tr P*Q? is
thus to decorate each of the partition function graphs
(Tr P") with one or two bubbles on or off the site of a
graph on the lattice. The presence of @, however,
considerably complicates the trace of a graph, which
is now no longer simply related to the number of the
vertices of a graph as is in the trace of the partition
function graphs and the fluctuation graphs.
We can write

Q*=23N,+ 2 N,N,. an

Hence,to obtain Tr P"Q2%, we must decorate each of
the partition function graphs twice, first with one
bubble and then with two bubbles. When bubbles are
decorated on the site of a graph [see Figs. 3(A), 3(B)},
then the trace is still simply 2=*. But when bubbles
are decorated off the site of a graph [see Figs. 3(C),
3(D)], there seems to be no simple relation for the

(A) (B)

(C) (D)

Fic. 3. A square is decorated by one and two bubbles on and off
the site of the simple square lattice.

trace. In Appendix B we shall consider a few simple
examples.

It will be clear from these examples in Appendix B
that the trace of a decorated graph Tr P*Q?, apart
from the lattice constant and the occurrence factor
both of which arise from P”, depends solely on the
number of N’s and N'’s that a graph has.?* Thus the
effect of decoration is, in this sense, again independent
of a graph and a lattice constant. That is, N N NT N*,
for example, which refers to G(6) or G(11), yields an
identical coefficient (—27%x{G(6)} and —2-4y{G(11)},
where x and y are their respective occurrence factors).
Hence one can conveniently tabulate the coefficients
of traces of all possible combination of N’s and N’s
which can make up the Z graphs and thereby avoid
tedious effort of taking traces for each decorated

graph. In Table VI we have tabulated the coefficients
of the combinations of 7N’s and N'’s.

TABLE V1. Trace of decorated graphs.

Decorated Graphs Trace™ Decorated Graphs Trace®
2.1 NNt -3 6.1 NNNNNNt §
6.2 NNNNNTNt ~}
. t -1
e VAR _i 63  NNNNiNTNt -3
: 64  NNN!NtNtNt -1
2; x%%'rN]:fT 0 6.5 NNTNITNtNTN?T $
. -1
. 7.1 NNNNNNNt 3
4.3 NNTNT N 0 72 NNNNNNiNt 3
5.1 NNNNNt 1 7.3 NNNNNtNtNT ~3
52 NNNNTNt -1 74 NNNNtNtNt Nt -3
53 NNNT Nt NY -1 7.5 NNN! Nt Nt NNt 3
54 NNt Nt Nt Nt 1 7.6 NNYNT Nt Nt Nt Nt H

2 To be multiplied by 2~%, where # is the number of N’s and N'-‘"'s of a graph, which is the same as the number of the vertices

of a graph.
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The susceptibility per spin in the perpendicular
direction up to the seventh term for the general
lattice is given as follows?®:
4KpTy,
=1~ (K*2Y)[{G}] — (K*3)[H{G3)}]

— (K4NHG()} + 2{G(2)} + 8{G(6)}

+ 6{G(1, D}] — (K¥/5HI15{G3)} + 15{G(7)}

+ 25{G(12)} + 30{G(1, 3)}] — (K*/6H{G(1)}

+ 6{G2)} + 12{GB)} + 3{G(4)} + 18{G(5)}

+ 96{G(6)} + 48{G(11)} + 5{G(13)} + 36{G(26)}
+ 90{G(29)} + 30{G(1, 1)} + 30{G(1, 2)}

+ 7{G(, 6)} + 18{G(3, 3)} + 67.5{G(1, 1, 1)}]

+ (K'[1D[53{G(3)} + 175{G(7)} + 280{G(11)}

+ 490{G(12)} + 133{G(14)} + 112{G(15)}

4+ 140{G(16)} + 1008{G(25)} + 448{G(30)}

+ 399{G(54)} + 441{G(60)} + 367.5{G(76)}

+ 420{G(1, 3)} + 37.5{G(1, 7} + 420{G(1, 12)}
+ 105{G(2, 3)} + 735{G(3, 6)}
+ 472.5{G(1,1,3)}] ~ - --.
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APPENDIX A: OCCURRENCE FACTORS

Through the following examples we show how the
occurrence factors are determined (the graphs are
identified in Fig. 4).

1. G(ij)

Define 4 = S}'S; and 4" = §;S;”, where sum on
i and j are implied. From the commutation relations
of S¥, we see that 4 4 = A" A" = 0. The matrix
elements for this graph are 4 A" 4 A" = N N'. Since
this is the only possible representation, the occurrence
factor is unity. In fact, for all the two-vertex polygons
the occurrence factor is always 1.

2. G(ijk)

Define 4 = S}'S;7, A' = 88,7, B=S/S,, and
B' = $}S;. From the commutation relations of S},
AB=A"B' = A4'BA' = AB' 4 =0.

The matrix elements in terms of 4 and B are

AA ' AA'BB' + A" AA"BB' A+ AA BB A A
+A'BB AASN A+ BB AAT A4
+ B A4 A4 B

Glii) Glijk) G(kq‘;')
i
_ k '
I k r
Fic. 4. Graphs whose occurrence factors are illustrated in Ap-
pendix A.

Now, since 4 and B are inequivalent, one can produce
6 more terms by exchanging the roles of 4 and B.
Hence we obtain for the occurrence factor which is
6(NNN'+ NN'NY),

3. G(kgrt)
Define A = S;S;, B=S/S7, and C=S}S],
with A" B' C' defined analogously as before. Again
AB=BC=AC=A4"B"=B'C' =4 Ct =0.

The matrix elements can be generated by permuting
A" Bt C'in 4 A" BB' C C' with 4 B C fixed and by
permuting A" B C* in 4' 4 B' BCT C with 4 BC
fixed. The result of this permutation gives the occur-
rence factor which is

2NNNN'+4NNN'Nt + NNTNTNY),

4. The Occurrence Factors for Simple Polygons

The occurrence factor for n-sided simple polygon
(by a simple polygon we mean a graph with 2 lines at
every vertex) can be obtained recursively from the
occurrence factor for (n — 1)-sided simple polygon.
This recursion relation is quite simple and can be
used to obtain the occurrence factors for all simple
polygons. We shall illustrate this relation by showing
the occurrence factor for G(6) obtained from G(3)
whose occurrence factor is assumed known. Write
(N,N,N! + N.NIN})- N,N!. If m or n happens to
be the same as i, j, or k, then, N being idempotent,
we reduce the numbers of N's by one from 5 to 4,
which is just the required number of N’s for G(6).
Recalling that N,N] = 0, we find that the result of
this reduction in all possible ways is

NNNN'+4NNN'N' + NNTNTNT,
This is the occurrence factor for G(6).

APPENDIX B: THE TRACE OF A
DECORATED GRAPH

The trace of a graph decorated by one or two
bubbles can be simply obtained. The following two
examples will illustrate the simplicity.

(1) The trace of a lattice which is decorated by
one and two bubbles [see Figs.S(A) and 5(B)]:



T

() (€} (<)

|
i

(C)

{F)
Fi1G. 5. (A), (B) The simple square lattice is decorated by one and

two bubbles. (C)~(F) A two-sided polygon is decorated by one and
two bubbles on and off the site of the lattice.
Tr*Q*=Te* I N, + Tr* X' NN, = }N — }N.
r ri
The second term results from

27¥Tr 3’ NN, = 272N(N — 1).
Hence, "
Tr* >’ NN, = —}N.
rt

(2) The trace of the 2-sided polygon decorated by
‘one and two bubbles [see Fig. 5(C); 5(D), 5(E), 5(F)]:

Tr* PQ% = Tr* 3 N,N}IS N, + 3’ N,N,.
(mn) 4 Tt
(i) One bubble:
Tr* 3 N,NL3 N, = }Ng — }Nq = 0.

(mn)
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(ii)) Two bubbles:
Te* 3 NN} 3 NN, = —}Nq + $Ng = —iNg.

{(mn) rt

Hence,
Tr* P2Q? = —Ng.
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Applied to 3-dimensional space, Regge calculus approximates a curved space by a collection of tetra-
hedrons or other simple solid blocks. Within each block the geometry is Euclidean. Curvature is idealized
as concentrated at the edge common to two or more of these solids. We specialize to a static geometry
endowed with spherical symmetry and to a radial electric field produced by the flux of electric lines of
force trapped in a throat connecting two quasi-Euclidean regions of space. The one relevant Einstein field

equation takes the form

all edges which
meet at a given
vertex

(

of prism

-

length of edge

)

factor proportional to
square of electric field

deficit between (1) sum of

dihedral angles which meet

at that edge and (2) normal
value of 2=

)-

In method (1) the space is decomposed into shells separated from one another by icosahedral surfaces,
all having a common center. Method (2) is even simpler: Space is decomposed into successive spherical
shells of area 4xp? separated by a proper distance d. Regge calculus gives a recurrence relation relating
the dimensions of the successive shells. The approximate geometries calculated by methods (1) and (2)
are compared with the well-known exact Schwarzschild and Reissner-Nordstrem geometries. Errors
range from roughly 109, down to less than 19, depending upon the method of analysis, the quantity

under analysis, and the fineness of the subdivision

I. INTRODUCTION AND SUMMARY

We apply Regge calculus® to a 3-dimensional prob-
lem of general relativity where the answer is already
known (1) to assess the accuracy of this kind of
skeleton analysis, (2) to display the features of the
geometry, and (3) to pave the way for some later
applications of Regge calculus to truly 4-dimensional
problems, problems of geometrodynamics where the
3-dimensional geometry changes with time. Such a
3-dimensional problem can be readily found in a
time-symmetric initial value problem? possessing
spherical symmetry. The features of the time-sym-
metric initial value geometries of Schwarzschild (mass,
no charge) and of Reissner-Nordstrem (mass and
charge) are already well known.>3 They possess a
throat of minimum area connecting two regions of
space which are asymptotically flat. Moreover, these
geometries are symmetric with respect to reflection in
the throat. This is to say, the 3-geometry 'S extended
forward in the direction of the “‘upper Euclidean”
region from the throat is identical to the ¥S extended
backward in the “lower Euclidean™ region. By sym-
metry, we therefore know that the extrinsic curvature
of the throat G vanishes. For this reason it is enough
to specify the radius of the 2-sphere located at the
throat in order to have a well-defined boundary

70

condition, With this boundary condition, Regge
calculus allows one to integrate step by step from the
throat so that the complete (¥S can be traced out.
The procedure employed in this paper, where one
starts from the throat of the wormhole and generates
the entire 3-geometry, is analogous to that envisaged
for future, more sophisticated, applications of Regge
calculus where one thinks of starting from a time-
symmetric 3-geometry and finding by integration the
entire 4-geometry.

Two methods have been used in the present work
to decompose into Euclidean blocks (with “rattle”
at the edges of joining) a 3-geometry possessing
spherical symmetry. In the first, the “icosahedral
method,” successive spherical cross sections through-
out the geometry are approximated by icosahedral
surfaces, as an icosahedron is the regular polyhedron
with the largest number of identical faces. Were we
applying the Regge analysis to a problem of no
special symmetry, we would be well advised to take
the building blocks of the 3-dimensional space to be
3-simplexes (tetrahedrons). However, the symmetry
of the present problem suggests the use of prisms,
such as shown in Fig. 27 of Ref. 4, rather than
tetrahedrons, to fill in the space between two successive
icosahedral surfaces. Twenty blocks are needed for
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FiG. 1. Decomposition of the 3-geometry by the continuum
method. Each surface is divided into very large numbers of very

]

small rhombuses, such as pgrs lying on the inner surface and p'q’r’s
lying on the outer surface. Joining the corresponding points p to p’,
qtoq’,rtor’, and s to s’ gives the typical building block with which
the 3-space of the shell can be constructed. To insure spherical
symmetry of the outer surface after construction and to maintain
the “‘rigidity” of the building block, we demand (1) that the base
and summit rhombus of each block be parallel to each other, (2)
that all the surfaces of the block be plane surfaces, and (3) that the
lengths pp’, q¢’, rr’, and ss’ be all equal to d.

each “shell.”” It is sufficient to give the three edge
lengths a;, ya;, and a,.; in order to determine
completely the geometry of such a block. The
“continuum method” treats each spherical cross
section throughout the geometry as a polyhedral
surface with a very large number of very small
rhombus faces. The shell between two spherical
surfaces separated by a small proper distance d is
broken up into blocks which have parallel rhombus
bases as shown in Fig. 1.

Numerical calculation was carried out with an
IBM 650 and later an IBM 7094 computer at Princeton.
In the region where the space is quite flat, the error of
approximating a sphere by-an icosahedron shows up
(Table I) in the icosahedral method, but there is no
such error in the “continuum method”; there is only
an error (Table II) in that method because of the
finite separation J between successive spherical
surfaces.

II. THE SCHWARZSCHILD AND REISSNER-
NORDSTR@M GEOMETRY AT THE
MOMENT OF TIME SYMMETRY

Acceptable initial value data on an initial spacelike
hypersurface o, in our case of empty space, comprise
the following: First, divergence-free electric and

magnetic fields on the hypersurface,
V-H=0, (1
V.E =0; (2)

second, a suitably regularinitial geometry g,; (x1, x2, x%)
on this hypersurface; and third, an imbedding of this
hypersurface in the enveloping and yet-to-be con-
structed 4-geometry, for which the tensor K, of
“extrinsic curvature” s will satisfy the four Fourés-
Bruhat initial value conditions. Three of these con-
ditions have to do with the Poynting flux and will be
automatically fulfilled in our special problem (zero
magnetic field and zero extrinsic curvature). The
fourth reads

intrinsic .. .
extrinsic 87 times

scalar curvature ener
curvature | — | . . £y 3)
; . invariant density
invariant

of o ong¢
of ¢

Here and throughout the paper we use the geometrized
quantities which are related to the conventional
quantities (“conv”) by

mass: m = (G[cE)Myony » )]
Charge: q = (G%/cz)qconv s (5)
electric field: e = (G}/c¥e,,py» ©)
. ner, ene
energy density: (flensigg/ ) = (G[cY) ( den:i};) .
™

Our problem is simple because the initial value
problem is time symmetric.2 The extrinsic curvature
vanishes on the 3-geometry of time symmetry. Equa-
tion (3) is simplified to

87 times the energy
density on this |. (8)
3-space

MR =2

The most natural problem to solve within the
framework of Egs. (1), (2), (3), and (8)—as a test of
Regge calculus—is one where the answer is known.
The simplest examples of this kind possess spherical
symmetry. They alone are considered here. The
electric field is

(flux constant)  4mq

(proper surface area) T4

e= 9
The charge g is envisaged as a measure of the number
of electric lines of force trapped in the topology of
space (‘““wormhole interpretation of electric charge’).?
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From the electric field we find the density of electro-
magnetic energy. Thereupon we find that the initial
value equation (8) takes the form

R = 32m%g?/ 42, (10)

The metric of a 3-space of spherical symmetry can
always be written

ds? = y*(dr® + r*df® + r¥sin? 0 de?).  (11)

Consequently, the initial value condition is given by®
8y~ Viy = 20°/(y°r). (12)

The solution is’
p = [(1 + m[2r)* — (g/2r)}k (13)

Here one of the constants of integration is chosen to
be unity (“scale normalization”). The other is set
equal to the mass.

The proper area of a spherical surface with coordi-
nate radius r is

proper area
of sphere of | = 4nr2[(1 + m(2r)? — (g/2r)*]2. (14)

coordinate r

This expression has a minimum at r = }(m?® — q2)}
corresponding to the throat of the wormhole. The
proper area at the throat is given by

minimum surface) s o .
( area at throat ) = 4n[(m® — ¢*) + m]. (15)

The 3-geometry is completely symmetrical with
respect to an interchange of the “upper” and “lower”
Euclidean spaces, as appears most quickly on making
the coordinate substitution

r= (mt— q?)/4r'.

Three quantitative features of the geometry ©'G
are desired in order to provide points of comparison
with the approximate geometry to be obtained from
the Regge calculus: (1) the proper volume contained
between G and a spherical (or icosahedral) surface
of coordinate radius r, (2) the geodesic distance
between the throat G and this surface, and (3) the
rotation per unit area of a unit vector if transported
parallel on this surface along a loop perpendicular
to the radial direction. These relations are most
conveniently expressed in parametric form in terms
of the dimensionless quantity

u=2r/(1 — a®¥m, (16)
where we have introduced
o = |glfm (1). (17)

In terms of this parameter we have

(radial coordinate r) = (1 — o®)¥mu, (18)
roper area of’
(Pope o) = 4711 + (1~ wipms, (19

proper area of
sperical surface with
coordinate u
=m(l — )[u + u? + 2(1 — o« Pm?, (20)

proper volume between
G and the spherical
surface with coordinate u
=71 — AN — w3 + 91 — o) Hu? — uy)
+ 901 + 40 — o) — u?)
+ 3(20 — 1203)(1 — o)~ In w}m®,

"proper distance measured
outward from G to a
spherical surface with

coordinate u

=(1 - u—ut+2(1 - inum. (22

@n

Turning from distances to curvature, we consider a
vector O pointing in the direction of increasing 6 and
a vector ¢ pointing in the direction of increasing ¢.
We use them to define an elementary loop perpen-
dicular to the direction of increasing r. We take a
unit vector that lies in the plane of this loop and carry
it around the loop by parallel transport. The amount
of rotation that this vector undergoes, divided by the
size of the loop, defines a “rotation factor,” with the
value

per unit of area in
plane of 6, ¢ loop
_ Ria‘kl‘PinQD%i

Emn0" 9" 8008”9
In deriving the last equation we have assumed that the
2 and 3 axes are aligned along the directions of in-
creasing 6 and ¢. From (23) we find
O35 = 16(1 — o) Hu 4+ ut + 2(1 — o) ¥)2

X[ — a?(l — a2}

X 4+ ut 4+ 21 — o) hHlm2  (24)
Each of the above is written in such a way as to express

the symmetry or antisymmetry with respect to the
exchange of

rotation of unit vector
023 =

22 33

= 278 Roges. (23)

u~—>ul,

which is the operation for the exchange of “upper”
and “lower”” Euclidean spaces.
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In Regge calculus the initial value equation of
general relativity for a time-symmetric 3-geometry
translates? to

2.2
Le, 32mgq
bones that meet V' A2
atthevertex Vg
enclosed by the
volume V

(25)

This set of equations, plus an initial 2-surface of
reflectional symmetry (between “upper’ and “lower”
Euclidean space) and spherical symmetry, is enough
to allow one to calculate the whole 3-geometry.

A. Icosahedral Method

Travel outward in the Reissner-Nordstrom geom-
etry, starting at the throat. Then one encounters
successive spherical surfaces, with successively in-
creasing radii. These surfaces can be approximated as
closely as one desires by polyhedral surfaces of suffi-
ciently many faces. Let one limit attention to regular
polyhedrons. Among regular polyhedrons none has
more faces than the icosahedron, with its 20 triangles,
12 vertices, and 30 edges. Accordingly, we divide all
space up into “shells” located between successive
icosahedral surfaces. We further chop up each
individual shell into 20 triangular prisms. The base of
each prism sits on the inner icosahedral boundary of
the shell, and the summit touches the outer icosa-
hedral boundary.

Inside of each prism the geometry is Euclidean.
Any curvature comes from the ‘“angle of rattle”
between these prismoidal blocks. Each triangular
block can be uniquely specified by three lengths: an
edge of the lower triangle, (4,B;) = a;; an edge of

the upper triangle, (4;,,B;.,) = a;,;; and an edge
connecting the two, (4;4;,,) = b; (Fig. 2).

If the building blocks are fitted together according
to Euclidean geometry, these three lengths are not all
independent. Any two of them, a; and b; for example,
directly fix the third:

a1 = a; + [3 — 4 cos® (3m)]bi/sin (37)

= a; + 1.050b; (Euclidean case). (26)
In our case the blocks, though still individually
Euclidean, do not fit together into any over-all
Euclidean space, and (26) does not apply. In actuality,
we do not even want to leave the slant height b, of the
prism as a free parameter. We want to have a purely
automatic way of going from the characteristic
dimension a; of one icosahedral surface to the
characteristic dimension a;,; of the next icosahedral
surface. Consequently, we fix b; instead of leaving
it as a freely disposable parameter. We give it the
value

b; = ya;. 27)

To the “proportion factor’ y we assign a small value
when we want to decompose space into thin prisms
and a big value when we are content with a smaller
number of thicker slices. Thus, with y = 0.1 (the
value adopted in the present calculations) and a
characteristic dimension for the tenth icosahedron of
a9, we have for the characteristic dimensions of any
other icosahedron

a; = (1 + 0.1050)-10g,,.

In other words, an expansion factor of 1.1050 carries
the family of icosahedrons into itself. No such simple

Disy

Fn\/sm

(A)

(B)

(C)

F1G. 2. Decomposition of the 3-geometry by the icosahedral method (see also Ref. 4). (A) The icosahedral surface 4;B,C;DE,F;- -
is used to approximate a spherical surface of the same area. (B) The 3-dimensional space is broken up into shells separated by icosahedral
surfaces. (C) Between the surfaces 4,B,C;DE;F;---and 4;,,8;,,C,,D; ,E; ,F- - the space is fitted with 20 triangular blocks of the
kind 4;B,C;4;,,B;,1C;,,. We choose the planes 4,B,C; and A4, ,B;,,C;,, to be parallel and to have equal connecting edges
AiAy, 1, B;B;,,,and C;C, ,. Thus, the three lengths a,, b,, and a,,, uniquely specify the geometry between the two surfaces.
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relations obtain when we turn from flat space to the
approximation of curved space by Euclidean blocks.
The family of icosahedrons, instead of running from
indefinitely small dimensions to indefinitely large ones,
with a factor (1 4 1.050y) from one to the next, have
now a smallest member, “the icosahedron of the
throat,” i = 0. Not only are icosahedra of positive I
values larger than this special one, so also are icosa-
hedra of negative 7 values (reflection symmetry
i— —i).

To fix the dimensions of the smallest icosahedron,
we identify its area with the area of the throat as
given by the exact analysis; thus, we write

area of smallest) = 9
( icosahedron ) = 5(y/3aq

= dnt + (1 — &) Pm?

area of minimal
_( 2-sphere ) (28)

We find g, = 2.4092m for the Schwarzschild case
(x = g/m = 0) and q, = 1.9273m for the case o« =
g/m = 0.8 (a little less than the upper limit « = 1 at
which the Reissner-Nordstrom geometry ceases to be
regular). Whatever the actual value of a,, it is con-
venient in the following to measure all quantities in
terms of g,.as a unit of length (“icosahedral units”).
Thus the geometrized charge g, which has the dimen-
sions of a length, is expressed in terms of g, as follows:

g = om = a(mjaa, = (#/)dy.  (29)
Here the conversion factor has the value
24092 for =0
e = Gofm = {1.9273 for «=08 Y

The departure of the dimensions of successive
icosahedrons from a simple monotonic geometrical
sequence arises from the curvature of space. This
curvature cannot be seen or evaluated simply by an
inspection of the dimensions of the prisms in a single
icosahedral shell. It requires for its determination the
dimensions of the blocks in two immediately succeeding
icosahedrons. More specifically, focus attention on
the vertex 4; in Fig. 2(C). We can get the curvature at
this point only if we know all the dimensions of all
the blocks that meet at this point: five prisms in the
inner shell and five prisms in the outer one. Con-
versely, knowing the curvature (from the density of
electric field energy) and knowing the dimensions

a; 4
b - = va. of the typical prism
1= Y411 iy the inner shell

a;

and
a; of the typical prism
b; = ya,) n the outer shell,

we can determine the remaining dimension a;,,. We
are then ready to proceed to the next sheil.

Knowing the characteristic dimension a;,, of the
(i + 1)th icosahedron, we can find its surface area 4.
Thence we find the electric field 4wg/A4, the density of
electric energy at this new location, and the curvature
there. This information puts us in a position to find
di5. So the calculation proceeds, step by step, in
recursive style, as far out as one cares to go.

Denote by V(a;, b;, a;,,) the volume of a triangular
prism with edge lengths a; and a,,, on the triangles
and slant height b;. From (25) we find the formula to
determine the characteristic dimension of the ‘“new”
icosahedron from the dimensions of the two preceding
“old” icosahedrons:

Sae(a;) + bie(b;) + b;_ye(b;_y)
= 327"k’ [5V (as, 3bs, 3a; + 3aisy)

+ 3V(Ga; + Yai, 3b,y, ai)]/[S(ﬁ)ag]z, (31)
where the formula for the angles is given in the
Appendix.

This recursive procedure for going from a,_, and
a; to a;, requires a slight amendment to make it
apply to the very start of the calculation. In the
beginning one knows a,, but not a_,, and one wants
to calculate a, . One has simply to identify a_, with a,
and b_, with b; (“symmetry with respect to reflection
at the throat”). Then in this special situation, as in
the general case, (31) supplied a single equation to
determine a single unknown. The calculations were
made by the well-known method of repeated trial and
error (Newton’s method; rapid convergence), The
results of the calculation appear in Table I.

B. Continuum Method

In the continuum method, a 3-geometry possessing
spherical symmetry is divided into spherical shells
separated by spherical surfaces. A surface is conven-
iently identified by its proper area. Consequently, it
is appropriate to introduce a ‘“‘characteristic dimen-
sion” (Schwarzschild radial coordinate) p for each
surface such that the proper area of that spherical
surface is given by 4mp?. Each spherical surface
throughout the geometry is further subdivided into
surface area elements as follows:

(1) Divide the polar angie = into equal intervals
Af so that bands with widths pAf are obtained.

(2) In each band, divide the total azimuthal angle
of 27 into equal intervals Ag (Figs. 1 and 3).
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Fic. 3. In the continuum method, the 3-dimensional space
between one spherical surface and the next is broken up into building
blocks such as pgrsp’q’r’s’. Shown here are surface area elements
in three successive spherical surfaces whose areas starting from the
bottom are determined by the quantities g, p, and p’, respectively.
They are separated by proper distance 4. Two building blocks

orr ot

extend the 3-geometry outward from pgrsuv to p'q’r’s’s’v” and two

3-geometry in these successive spherical surfaces is uniquely specified
by 5, p, p’, and d.

The shell contained between one spherical surface
and the next is broken up in this way into building
blocks. The spherical symmetry so “‘rigidifies” these
blocks that they need not be taken to be tetrahedrons.

dle(qq") + <(q9)] + pABle(gs) + (qv)] + 2p sin OAge(qp) _ 29°

The typical building block is shown in Fig. 3. We
build it as follows:

(1) Take a typical surface element pgrs and join it
to the next corresponding element pq’r’s” with the
connecting edges pp’, q¢’, rr’, and ss’ all equal to one
another. The common length d of these edges would
be equal to Ap if we were dealing with Euclidean
geometry—but we are not!

(2) Demand that all the faces of the block be plane
surfaces.

(3) Demand further that the planes pgrs and
p'q'r’s’ be parallel to each other.

In order to specify the 3-geometry between one
spherical surface and the next, three quantities are
needed: the ““characteristic dimensions” p and p’ of
the two surfaces and the “thickness’ d between them.
But these quantities in and by themselves do not
determine curvature. Focus attention on the vertex g
in Fig. 3. We can get the curvature at this point only
if we know all the dimensions of all the blocks that
meet at this point: four blocks in the inner shell and
four in the outer one. For simplicity, we give the
thickness of the inner and outer shells equal proper
values, d. In that case, the dimensions of all the blocks
meeting at the vertex g can be specified by the proper
distance d and the characteristic dimensions p, p, and
p’ of three successive spheres. Six bones meet at this
vertex, qu, ¢s, q4', 44, gp, and one more bone having
the same characteristics as gp. We need to specify the
quantities /,, €,, V, and A for this vertex. The length
1, and the deficit angle ¢, of the bones are, respectively,
pAB and e(qv) for the bone gv, pAf and e(gs) for the
bone g¢s, d and e(gq’) for the bone g4, d and «(g4g) for
the bone ¢4, and p sin A ¢ and €(pg) for the bone pg.
The fundamental equation of relativity becomes

p°d sin 6A6A¢p ot

Write the deficit angles explicitly in terms of the
lengths. Then take the limit when A6 and Ag approach
zero. After some simplifications, we finally obtain
the following equation:
(" — PP +4p(p = p)+ (p— pP

—dp(p — p) — 24*(1 — ¢*/p?) = 0. (33)
From this quadratic equation in p’, we can get p" as a
function of p and p. In writing the answer, we replace
P by pii1, p by ps, and p by p; ; to obtain

pir = —p: + [4p] — 4:Pi(Pi—1 — p) N
+2d°(1 = ¢*/p%) — (pi — P’ (34)

(32)

where the other solution of the equation is discarded
because it gives a negative p’ (or p;,,) value.

At the start of the calculation, we identify p_; with
p1 by “symmetry with respect to reflection at the
throat.” Then in this special case, as in the general
situation, (34) supplies a single equation to determine
a single unknown, the characteristic dimension of the
first sphere. We fix the dimensions of the smallest
sphere by identifying its area with the area of the
throat as given by the exact analysis. Thus, we write

pr=1[1+ (1 —adipm (35)
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TasLe 1. Schwarzschild and Reissner-Nordstrem peometry in Regge calculus, icosahedral
method. a;, edge length of triangular prism; b, its height is taken to be b, = ya, with y = 0.1;
e(b;), deficit angle associated with b;; (a;.1 — a;)/b;, a measure of the increment of surface area

relative to the increase in radial separation.

Number of e(b;) iy — Qs e(b;) iy — a;
the surface a; (rad) b; a; (rad) b;
0 1.000 1.046 0.0036 1.0000 1.047 0.0027
1 1.0036 1.039 0.0108 1.0027 1.042 0.0082
2 1.0145 1.024 0.0179 1.0109 1.034 0.0134
3 1.0326 1.003 0.0247 1.0245 1.021 0.0188
5 1.0911 0.943 0.0374 1.0689 0.985 0.0291
10 1.3820 0.735 — 1.2926 0.838 —
40 18.9143 0.0527 1.0310 15.3019 0.0790 1.0140
41 20.8644 0.0477 1.0330 16.8634 0.0718 1.0234
48 41.6396 0.0239 1.0423 33.4996 0.0363 1.0375
Euclidean a; 0 1.050 a; 0 1.050

and find p, = 2m for the Schwarzschild case (« =
glm =0) and p,=16m for the case =« =038
(Reissner—Nordstrem geometry).

1II. RESULTS

The 3-geometry generated by the icosahedral method
is listed at selected points in Table I. We have used a
value of y = b;/a; = 0.1. The quantity €(b;) in Table
I is the deficit angle of the bone b; in radians; it
measures the deviation of the geometry from
flatness.

Many features of the geometry can be observed.
Near the throat the base and summit of the triangular
block have edges only slightly different from each
other. Hinging on the bone b are five dihedral angles
each of which is a little larger than 4. Therefore the
deficit angle of b, is close to = near the throat. The
space near the throat is indeed far from being flat!

Far away from the throat we approach Euclidean
geometry. In flat Euclidean space the edges a,, b,
and g, (regardless whether 7 has the value 48 or any
other value!) satisfy

(@i, — a;)/b; = 1.050.

It is seen from Table I that the quantity (a,,; — a,)/b;
at the end of the 48th construction is very close to this
Euclidean value. Consequently, space far away from
the throat is asymptotically flat. This is further
indicated by the smallness of the deficit angle (b,)
in this region.

The expression (34) obtained for the continuum
method can be considered already as the solution for
the 3-geometry under consideration since it is an
explicit expression relating the surface areas and their
separations. However, in order to exhibit the features
of the geometry and to compare the results with the

TasLe II. Schwarzschild and Reissner-Nordstrem 3-geometries in the continuum method

according to Regge calculus. 47 p} is the area of the ith spherical surface. Sum of all the separa-

tions d starting from the throat gives the geodesic distance measured from the throat up to that

surface. 0,3 measures how much the space deviates from flat space. Units: p, and 4 in units of m;
0,5 in rad/m?®.

q=0 g = 0.08m
Sum of d Sum of d
Number of starting starting
the surface pi from throat 053 pi from throat 0.5
0 2.0000 0.0 1.6000 0.0
100 2.0013 0.1 0.2495 1.6012 0.1 0.3898
200 2.0050 0.2 0.2481 1.6047 0.2 0.3875
900 2.0998 0.9 0.2160 1.6939 0.9 0.3339
1000 2.1228 1.0 0.2091 1.7156 1.0 0.3223
29 500 26.5857 295 0.000106 26.0822 29.5 0.000111
30 000 27.0667 30.0 0.000102 26.5631 30.0 0.000105
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TabLE III. Absolute values of errors in the icosahedral method and the continuum method.

At worst Location
Discrepancy, Regge calculus At throat  Atinfinity  place, in u of this
vs Ricci calculus in per cent inpercent  percent  worst place
Volume from throat to [icosahedron method 1 8.63 8.63 o0
a given surface {continuum method 0.1 0.005 0.02 10
Geodesic distance ficosahedron method < 0.01 2.90 2.90 o)
from throat to |continuum method 1.00 0.003 1.00 1
given surface ]

Rotation factor 0, [icosahedron method 0.1 9.0 9.0 o]
|continuum method 0.001 0.01 0.05 5

exact solution, one proceeds to generate the 3-
geometry step by step with a computer.

In our calculation, the separation between succes-
sive shells is set equal to 4 = 0.001m. We use double
precision in the machine calculations. The results of
the calculations are listed for selected points in
Table 1I. The important features of the geometry can
be readily observed.

To compare the triangulation quantitatively with
the corresponding exact curved geometry, we identify
each spherically symmetric surface with a coordinate u
by equating their surface areas. The accuracies for
both the Schwarzschild and Reissner—-Nordstrom
geometries are very close so that it is not necessary
to distinguish the two cases. The discrepancies in our
approximate geometry versus the exact solution is
listed in Table III for both the icosahedral method
and the continuum method. Except for the measure-
ment of geodesic distance from the throat, the con-
tinuum method gives very small fractional error in all
the quantities. However, the error for the icosahedral
method is particularly large for the asymptotically
flat region. This arises because there is a significant
degree of mismatch when an icosahedron is used to
represent a sphere.

In conclusion, the Regge skeleton calculus offers a
workable way to determine—or specify—an initial
3-geometry. There is every reason to believe that it
will prove equally useful as a way to trace out the
dynamical evolution of geometry with time in
accordance with Einstein’s equations. Thus one
can treat situations which in practical terms are
beyond the reach of analytical methods. For example,
when a strong gravitational pulse of nearly spherical
form implodes, the geometry will become very strongly
curved. In consequence, the outgoing pulse may
differ drastically in pulse shape from the ingoing
pulse; or a gravitational geon, stable against the loss of
individual gravitons, may undergo collective gravita-
tional collapse; or a model universe itself may undergo
gravitational collapse.* The Regge calculus puts these

and scores of other problems within the reach of
analysis. Any desired level of accuracy can be obtained
by sufficiently fine subdivision of the space-time region
under consideration. Finally, the analysis offers—by
way of its numbered building blocks—a practical way
of displaying the resuits of such calculations. There-
fore, the skeleton calculus, with its universal worka-
bility, makes one recognize more than ever the truly
dynamic character of geometry and the wealth of
problems opened up to examination by Einstein’s
theory.
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APPENDIX: FORMULAS FOR THE COSINE
FUNCTION BETWEEN HYPERPLANES

Formulas for the sine function of angles between
hyperplanes have been given in detail by Wheeler.t
The evaluation of another trigonometric function
enables one to determine uniquely the quadrants in
which the angles lie. The cosine of the dihedral angle
between the planes pgr and pgs is given by®

cos (pqr, pqs) = — D(pqr, pgs)/[D(pgr)D(pgs)12,

(A1)
where
01 1 1
0 gp* np?
D(pgr, pgs) = A
(pgr, pgs) = | | I (A2)
1 ps? qs®  rs?
and
D(pgr) = D(pqr, pqr). (A3)

Here pg* = qp? is the square of the distance between
points p and g.
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The cosine of the hyperangle between the hyper-
planes pgrs and pgrt is given by

cos (pgrs, pqrt) = A(pgrs, pgri)|[A( pqrs)A(pqrt)]‘l,
(A4)
where
A(pgrs, pgrt) = D(pqr)D(pgs, pqt)

— D(pgr, pqt)D(pqr, pgs)
and

A(pgrs) = A(pgrs, pqrs).

The cosine of the hyperangle between the hyper-
planes pgrst and pgrsu in a 5-dimensional Euclidean
space is

cos (pgrst, pgrsu) = A(pgrst, pqrsu)/
[A(pgrs)A(pgrsu)lt, (AS)
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where
A(pgrst, pgrsu) = A(pqrs)A(pgrt, (pqru)

— A(pgrs, pgru)A(pyrs, pqrt)
and

A(pgrst) = A(pgrst, pgrst).

* Research jointly sponsored by Princeton University, and by the
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t Based in part on the A.B. senior thesis of the author,
Princeton University, 1961.
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This theory is then applied to elastic scattering from the Yukawa potential. An asymptotic series for
the solution at large distances is obtained which is valid for arbitrary wavenumber and angular

momentum.

1. INTRODUCTION

Several areas of mathematical physics give rise
to differential equations whose coefficients are
expandable in a double series in terms of x~"e="**
(n,m=0,1,2,--+; 1 is a complex constant with
positive real part). An example for 2 = 1 occurs in the
study of acoustic gravity waves.! Other examples
[Ref. 2, pp. 1067 and 1082; Ref. 3, Appendix B and
Eq. (23)] occur in the study of elastic scattering. In
particular, the elastic scattering of particles from a
Yukawa potential is governed by the radial Schro-
dinger equation

d’u,

o + {K* + [q(g + D/r*] — pe *[Ar}u, = 0. (1.1)

If an asymptotic power series solution of (1.1) as
r — oo were obtained according to the usual theory
of Poincaré, it would be observed that the Yukawa
potential ¢ *"/Ar ~ O{r—"} and concluded that the
asymptotic behavior of (1.1) is the same as the asymp-
totic behavior of

d?u,

dr®

The general solution of (1.2) can be given as a linear

combination of spherical Bessel functions of the first
and second kind.

In Sec. 2, multiple asymptotic power series are

defined and the basic properties of asymptotics are

established. In Sec. 3, this theory is applied to (1.1),

+ {K® + [9(g + D/r'Tu, = 0.  (1.2)
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The cosine of the hyperangle between the hyper-
planes pgrs and pgrt is given by

cos (pgrs, pqrt) = A(pgrs, pgri)|[A( pqrs)A(pqrt)]‘l,
(A4)
where
A(pgrs, pgrt) = D(pqr)D(pgs, pqt)

— D(pgr, pqt)D(pqr, pgs)
and

A(pgrs) = A(pgrs, pqrs).

The cosine of the hyperangle between the hyper-
planes pgrst and pgrsu in a 5-dimensional Euclidean
space is

cos (pgrst, pgrsu) = A(pgrst, pqrsu)/
[A(pgrs)A(pgrsu)lt, (AS)
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where
A(pgrst, pgrsu) = A(pqrs)A(pgrt, (pqru)

— A(pgrs, pgru)A(pyrs, pqrt)
and

A(pgrst) = A(pgrst, pgrst).
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and it is shown that the terms neglected by the usual
Poincaré theory have a large effect at finite points,
especially for small 4.

2. DEFINITION AND PROPERTIES

Let S be a sector of infinity of the complex plane
centered on the real line with central angle 2« € (0, §7).
Also suppose that (x,, ) < S for some positive
number x,. The function f(x) defined on § is asymp-
totic to the series

in the Poincaré sense as x — oo in S if
f(x) = Ea X" 4 o(xNemimT)
n=0

as x — oo in S for each fixed N. We denote this by

o
fX)~3ax et (x"eTA n=0,1, ).
n=0
It is convenient to define the class of functions
Am() = [f(x) | f(x) has an asymptotic expansion
in S as |x|— oo with respect to (x™"e”*™*: n=
0,1,2,--4]

Define P to be the set of p-tuples over the non-
negative integers and impose on P the reverse lexi-
cographic order <, ie., if N=(m, --,n,) and

= (my,++,m,) and q is the largest integer such
that m; # n;, then M < N whenever m, < n, and
M = N if g does not exist.

Definition 2.1: The sequence of functions [¢y(x):
N € P] defined on an unbounded region R of the
complex plane is called an asymptotic sequence (or
multiple asymptotic sequence) if ¢y = o(dy) as
|x| = co in R whenever M < N uniformly in N € P.

In this article we restrict our attention to “power”
sequences of the form (x"e¢*™*: n,m =0,1,2, ")
in the region R = S. Extension of the following work
to more general regions R and to asymptotic sequences
of analytic function {¢} in S, having the property that
|px| > Oforall x e R, |x| > x, for some x,, isstraight-
forward.

Suppose that the not necessarily convergent, formal
double sum

z zamnx_" —Ame

(2.1)
m=0 n=0

is given where {a, ,} is a sequence of constants.
Define

$a0) = 3 ™1 = exp (LD 22)

where f,,, is a nonnegative constant

Fon = (1) min (1, 1lag,nt mil}:
=0:

amn # 0’

Ay = 0. (2.3)

It can be shown by using Ritt’s method* that the
series e*™*f, (x) converges uniformly and absolutely
in S (the proof of this statement is contained in
the demonstration of Theorem 2.4 below). It has
been shown by Ritt that

(%) NZam,,x neTAmE  (xTmeTAME = 0,1,2, ).

Definition 2.2: A function F(x) defined in S is said
to be asymptotic to (2.1) as [x|— o0 in §, and
is denoted

F)~S 3 a,x e (2.4)
m=0 n=0
if:
@ Fu= [J950) ~ 3 ap e (e |
for each fixed m=0,1,2,--;
() T3 = () € Fpif (x) — finlx) ~ 0~ )

for each fixed u=m,m+1,---];
(©) F(x)€Fo;

(d) F(x)——zof,"jefF,,,Jrl forany fred%.
o

The asymptotic symbols of (a) and (b) are taken in
the Poincaré sense. The dependence on the order of
summation of (2.4) is consistent with the dependence
on the order of summation in the usual theory.

The following theorems and remarks show that
Definition 2.2 is consistent with the properties
normally expected of asymptotic series.

Theorem 2.1: If (2.1) is a convergent sum and

F(X) z Zamn —n —Amz’
m=0 n=0
then
F(x) ~E Eamnx meTAm,
m=0 n=0
Proof: Set
@
f:l = z amnx‘"e_;'mx
n=0

and observe that [}, € 5%, . Clearly, Fe 5, and

© ©
z 2 amnx_ne_hw EJ m4l -
p=m+1 n=0

F =3 300 =
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The standard addition and uniqueness theorems
are straightforward. The multiplication theorem is
proven below:

Theorem 2.2: Let

F(x) ~ 2 Eamnx‘" —hma
and e
G(x) ~ E % X €A™,
then e
H(x) = F(x)G(x) NZ %cmx etme
where e

||M§

n
z m—un v uv

Proof: By the usual theory H(x) € JC,. Since the
series for fy(x), go(x), and hy(x) are uniformly conver-
gent,

Jo()go(x)

®©

Zo(zao n—-v bO v{l - CXp( fO n— v
—~ exp (= go.,x) + exp [—(fony + go.oxﬂ})x—"
= hy(x) + ofexp (—1x%)].

Hence fo(x)go(x) € X5 .
Since  F(x) — fo(x) and G(x)
since fo(x) and G(x) € 4y, [F(x)

— go(x) €A, and
— fo()]G(x) and

JSo@)[G(x) — go(x)] € 4, (cf. Ref. 5, p. 18). Conse-
quently,
[F(x) = /o(0)]G(x) + fo()[G(x) — go(x)]

= H(x) — fo(x)go(x) € 4,. (2.5)

By substituting into (2.5) the appropriate asymptotic
expansions and performing the necessary calculations,
it is seen that H(x) — fy(x)g,(x) € X, .

Similarly it is observed that f,(x)g,._,(x) € 4,, and

o Ju(Ogm_,(x) €3, . Condition (d) has been
demonstrated for m = 0. Assume that this condition
is satisfied form = 1,2,3,---, M — 1. Furthermore,
we note that

M—p

6= o) Amn QS
and
M
(F - gofm) G ey 2.65)

Consequently,
M M M—pu
D FATESFACES ¥
M M—u
=H(x) =3 2 futn
#=0 m=0
M m
= H(X) - z zfugm—u € AJI—H‘ (27)
m=0 u=0

By substituting the appropriate asymptotic series into
2.7 [e.g.,
" for G

EZLO by, x

and

M
z Ay, nx—ne AMMM+1) for F— z frm]

and performing the necessary calculations, which are
valid because these operations are being done for
“usual” asymptotic series, it is seen that

M m

2 z f/,tg'm—u € J(?’JI—H

m=0 u=0

H(x) -
By induction the theorem is concluded.

Theorem 2.3: Let f(x) be differentiable in S and
suppose that

(x)NZ Zam,, “"e*™mT a5 |x]— o0 in S

m=0 n=0
then
h(x) = f'(x)
~ z Z [—Zmamn (n - 1)am n-—l] X" -Am:c
m=0 n=0

as |x| — oo in S,where a,, ; = 0.

Proof: Ritt demonstrated that the series for
[e*"*f,.(x)] is uniformly convergent whenever the
series for exp (Amx)f,,(x) converges uniformly. Hence

F) ~ 3 [ = (1 = 1)y
n=0
and f,,(x) € ¢}, . For each fixed m,
f(x) — Eofu(x) ~ fut1 € Apia» (2.8)
i
so that
f(x) — Zof,i(x) ~fm1 € Ami1- (2.9

Since f 11 € ..y, , We are done. In this proof we use
the fact that S'is not a ray (i.e., « # 0). This is neces-
sary for (2.9) to follow from (2.8) (Ref. 6, p. 38).
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Having demonstrated the primary algebraic and
analytic properties, it remains for us to demonstrate
existence.

Theorem 2.4: Given an arbitrary sequence of
numbers (a,,: m,n=0,1,2,3,--+), there is an
analytic function f(x) in S so that

e o} 0
f)~T Sau,x"e*™ as

m=0 n=0

Proof (Ritt’s Method): Define

jx] > oinS. (2.10)

E(amnn' m!fnt m)x""[1 — exp (—fpx")],
2.11)

Un(X) =

where f,,, is defined in (2.3). Using the inequality
|A(1 — e ®) <2 if [B|<1 and [B|-|4] <1 orif
ReB > 0and |B|-|4] < 1, we have

X" ! n1 [ = exp (=fpx)] < 2 [x]7",
Thus
() < 3 X nt ! = (xi2fm eV,
Let "
fx) = z U, (x)e e

and observe that

LGN < 3 )] lexp (=)

[}
< lle el/]:c) z le—}.mml/m!

m=0
< [xl* exp (e + 1/lx1).
Consequently,
= z Eamnx_ne_imz[l — &Xp (_fmnxz)] (212)

m=0 n=0

fx)

is an absolutely and uniformly convergent series in S.
It is obvious [from f,,(x) = u,(x) exp (—Amx)] that
the asymptotic behavior (2.10) of f(x) follows.
Furthermore, f(x) is analytic in S because the limit
of a uniformly convergent sequence of analytic func-
tions is analytic.

3. ELASTIC SCATTERING FROM A
YUKAWA POTENTIAL

The elastic scattering of particles is governed by
the Schrédinger equation

2
L
2m

Fri V(ir)® =0,

(3.1

where @ is a wavefunction, 4 is Planck’s constant,
m is the particle mass, and V(r)is the potential energy.’
The Yukawa potential is

V(r) = (B2m)U(r) = MK 2mur)e™, (3.2)

where A/u characterizes the depth and u the range of
the potential. For a stationary state of energy E,
define ® = ¢ *F4"y, From (3.1),

R2m)Ay + (E~V)y =0
or
— Uy =0,

Ay + ( (3.3)

where k = (2mE/A%) is the wavenumber.

The quantity E is the total energy and (3.3) is
recognized as a reduced wave equation (cf. Ref. 8,
pp. 313ff) in spherical coordinates. Separating vari-
ables (cf. Ref. 2, p. 1067; Ref. 9, p. 216), we have

p(r, 0, ¢) = SO, PJu(r)]r,

where, in terms of spherical harmonics,

Sﬂa(e’ ¢) = AM(COS P¢)PZ(COS 6)

+ B, (sin p$)P(cos b).
Also u,(r) must satisfy the radial Schrédinger equation

d*u,
d2

+ [k = qlg + Dr " = UM, = 0. (3.4)

Expand u,(r) in terms of the asymptotic sequence
(r—"e*™": n,m=20,1,2,---)as |r|]—>o0in §,ie.,

q(r) ~ z Z Aq,m, T reT

m=0 n=0

3.5)

where q, ,, , is a complex constant. Substituting (3.5)
into (3.4) and proceeding with the calculations, we
obtain, upon setting the coefficients of r="e~*™" to

zero, the recurrence relation

(‘uzmz + k2)aq m.n + 2/””(" - l)aq m,n—1
+ [(n — D(n — 2) — q(q + D]y m,n—2

- (}‘/:u)aq.m—l,n—l =0, (36)
where a, 1., = a4 m, 1_a,,,,,_2__0

Upon inspection of (3.6), it is seen that no non-
trivial solution of (3.4) admits an asymptotic expan-
sion of the form (3.5) unless k¥ = +ium for some
m = . These values of k are branch points of the
scattering matrix (Ref. 10, pp. 362ff) in the complex
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k plane. Some results for these values of k are

q

g, = {ln(n — 1) — g(g + 1)]
X [(1 = 1)1 —2) = qlg + D]+
9(q + Dag .0}/ Quin)"n!
for n=1,2,---, (3.7b)

=0 for m<m andalln,gq, (3.7a)

for ¢ a natural numberandn>¢q+ 1,4, 5, =0,

(3.7¢)
Aymo =0 forall m>m, 3.7d)

Ay iipa = AP0y 5 o/ 2720 + 1)(4rt 4 4) - - -
Qpm+p?) for p=1,2,-+-. (3.7¢)

Note that a, 5, is a constant determined by some
side condition; for example,
Agm,0 = lim u,(r) exp (umr).
"res

Since /i > 1, we note that u,(r) satisfies the radiation
condition du,(r)/dr — iku,(r) = o(1/r?) (Ref. 8, p.
316).

To obtain asymptotic formulas for other values of
k, define

wo(r) = e (r). (3.8)

Equation (3.4) becomes

d*w,[dr® + 2ik dw,/dr
— lq(g + 1) + (Apr)e ™ w, = 0. (3.9)
Expanding w,,
wq(r) ~ 2 z ba.m.nr‘ne_ﬂmr,
m=0 n=90

we obtain the recurrence relation

pm(um — 2kidb, p  + 2(um — ik)(n — 1)bg .01
+ [(n — D(n — 2) — g(q + Dby, m.n—2
- (A/:u)ba.m—l.n—l = 0. (310)
Whenever ik # um for all m, (3.10) has a nontrivial
solution. Results for the exceptional case are given
above. Some results for k ¢ —3}ium for all m are
given below; when k = —4ips and i is odd, similar
results are obtainable.
Then

byo.n = —[n(n — 1) —q(g + 1)]
X [(n = D(n —2) —q(g + D]~ q(g + D]
X byoo/(2K)*nl, n=1,2,3,---. (3.1la)

Ifgisaninteger, b, , = Oforn =¢ + 1,9 + 2, - -,

bymo=0 for m=1,2,---, (3.11b)
bo.ma = (A )by 00/m! (1 — 2ki)(2u — 2ki) - - -
(um — 2ki), for m=1,2,3,---. (3.11¢)

From (3.8) we see that u,(r) satisfies the radiation
condition when Im k£ > 0. We note that

Hm w(r) = by q.0-

r—= o0
Observe that b, , o = 1 is the Jost solution (cf. Ref. 11,
p- 373). One of the nice features of this asymptotic
series is that it demonstrates explicitly the manner in
which the Yukawa potential influences the scattering;
this influence is felt only in terms of m > 1. The terms
with m = 0 are essentially an asymptotic representa-
tion of spherical Bessel functions.

In terms of incoming and outgoing waves we can

write a formal solution of (3.4) as

uq(r) = A[e-f(kr_é”)fq(—k’ r
n S((Imei(kr—»}ﬂa) (k,P)), (3.12)

where A =b,,, and f(+k,r) = e (r)/by 4.
When solutions of the form (3.12) are obtained for
regions of the origin, {S{*'} is the S matrix whose value
is determined by the boundary condition at r = 0.
In this expansion {S{*'} can be obtained by matching
(3.12) to another symptotic solution which is valid
near the origin.
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An asymptotic formula for the eigenvalue is presented for the kernel appearing in the integral equation
of the Kirkwood-Riseman type. The method used here provides a procedure of successive iteration for
solving the inhomogeneous integral equation as well as the eigenvalue equation.

I. INTRODUCTION

In the present paper we discuss the asymptotic
distribution of eigenvalues of the integral operator

),
1]x — x'|*

1
Ko =f

for 0 < « < 1. This integral operator appears in the
Kirkwood-Riseman equation®

x| <1,

M

o(x) = f(x) + zfl Py

1 ]x — x'|*

with negative 4, in connection with the theory of
intrinsic viscosities and diffusion coefficients of flexible
macromolecules.

The method used here is based on the observations
that the integral kernel can be written as

0

>

1

©
ta—le—]z—x’lt dt,
[x —

x| T(a) Jo ®)
where I'(x) denotes the gamma function, and that
exp (—|x — x'| t) is the Green’s function of a second-
order differential operator. As a consequence, Eq. (2)
can be transformed into an integro-differential
equation.

This kind of transformation has been used suc-
cessfully in the theory of neutron transport equation
for critical media by Mitsis® and Gibbs.® These
authors have solved corresponding integro-differential
equations by Case’s singular eigenfunction expansion
method! and, using the theory of singular integral
equations,® have obtained, for expansion coefficients,
Fredholm’s integral equations of the second kind
whose Neumann series are convergent.

Case’s method is applicable also to our case, but we
will take the Laplace transformation technique
discussed in Ref. 6, which gives the final Fredholm
integral equation more directly than Case’s method.
The integral equation is inhomogeneous even when
we consider the eigenvalue problem of K—that is, even
for the case f(x) = 0. It will be found that the corre-

83

sponding Neumann series converges for all real values
of A except for negative 4 of small magnitude with
0<a<a* «*=027. The truncation of the
Neumann series, therefore, gives approximate solu-
tions both for the eigenvalue equation and for the
inhomogeneous equation for almost all real values
of 4.

We will consider the operator K in L?(—1, 1). Then
K is compact? and positive® and hence has a denumer-
able set of positive eigenvalues 4,, n=1,2,3,---,
tending to infinity. [Here we call 4 an eigenvalue
when the equation ¢ = AKg has nontrivial solutions,
@ € L*(—1, 1). Thus 4 is the inverse of an eigenvalue
in the ordinary sense.] Carlemann® has proved that
the series

zll;b-l/(l—-a) (4)

is divergent. The main aim of this paper is to show

that
A= () sin [$(1 — ot)n'](n -1 S 1+ a W)l—a
T 2 8
1
+o(-z) ©
for large n.

1I. TRANSFORMATION OF THE EQUATION
Let us first define

u(x, 1) = f 1 e lgp(x") dx/, (6)

where [x] <1 and 7> 0. Since ¢(x) e L*—1,1),
u(x, t) is twice differentiable for almost all x € (—1, 1)
and infinitely many times differentiable with respect
to t. Furthermore,

1g(x) =fwt°"1u(x, 1) dt
0

M

exists for almost all x € (—1, 1) and is equal to K¢
12(—1,1) since the order of integration can be
converted. Consequently, Eq. (2) reduces to

p(x) = f(x) + [A/T(2)Juo(x). ®)
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On the other hand, differentiating Eq. (6) twice with
respect to x, we obtain

u'(x, t) = —-t(e”“ f | e lg(x’) dx’
1
1 ’
- e“tf e ip(x") dx’) 9
and :

u"(x, t) = tfu(x, f) — 2tq(x), (10)

the last of which holds for almost all x e (-1, 1).
Substituting Eq. (8) into Eq. (10), we get the integro-
differential equation

w'(x, t) — tfu(x, 1)
24t ,
-2t (x )—-—f *u(x, 1y dt. (11)
(o)
The boundary condition for this equation follows
from Eqgs. (6) and (9) as

W, )+ tu(l,1)=0, (12a)
W(—1,1) — tu(—1,1)=0. (12b)

Thus we should seek the solution u(x, ) of Eq. (11)
that satisfies the boundary conditions (I2) and
possesses the properties mentioned above. For this
purpose, we Laplace-transform Eq. (11) assuming that
u(x, 1) = 0 and f(x) = 0 for |x| > 1. This procedure
has been developed® for the I-dimensional neutron
transport equation.

Define the Laplace transforms

1
iz, t) -—:J. e *u(x, 1) dx, (13)
-1
1
f(z) =f e *f(x) dx, (14)
-1
1 w0
ity(z) ==f e u(x) dx =f 7Yz, Hydt. (15)
~1 0
The last step in Eq. (15) is justified since uy = K¢ €

L2(—1, 1) and the interchange of integration order is
permitted. From Eq. (11), we now obtain

(2* — iz, 1) = =24 (z) — [241]T()]fi(z)
+ (=1, 0 + zu(—1, )]
— e[l 0 + zu(l, 1], (16)

whence, substituting the boundary conditions (12),
we have

(f()+—uo( ))

I(
—_" u(I’t)+ 2" u('_}»t) (]7)
z+1 z—1

and, in view of Eq. (15),
1’(«)

y(z) = — —=f(2)
L (T@) s g oy o
e ){ 7@) = W, (~2) elP_l(z)},
(18)
where we have defined
22 * .
Alzy=1— T b 7o 7 ; dt, (19)
V(2) = f uELY 20)
t—z

Equation (17), when coupled with Eq. (18), gives
the Laplace transform of a solution of Eq. (11). To
complete the solution, it is required to determine
u(+1, 1) and subsequently ¥, ,(2).

III. INTEGRAL EQUATIONS FOR Y4

First of all, we shall examine the properties of the
functions A(z) and ¥ ,(z). The integral in A(z) is
calculated explicitly in Appendix A as

ZL o t_ g dt
_ 73' o {e‘i’”'“_“’z"‘“l, O<argz < m,
sin [3(1 — o)yw]  le*™ %2l 7 <argz < 2.
(21)

Hence A(z) is holomorphic in the complex z plane
cut along the real axis. When z approaches a point ¢
on the real axis from the above (+) and from the
below (—) in the cut plane, A(z) has definite limits
A*(t) given by

:t%ﬂi(l»—a)tahl

e
A t>0,
Ay =1-— x
( ) F(U) sin {’é(] _ 0()77] e?%ﬁi(l»a)‘tlawls
t <0
(22)

Thus A(z) is a sectionally holomorphic function with
the line of discontinuity on the real axis. Furthermore,
let us note that if 2 > 0, A(z) has two simple zeros
4z, in the cut plane with

zo=vi, Vv om

1/(1—a)
oo - @
() sin [3(1 — o))
while it has no zefos if 4 < 0. |
The functions ¥ ,,(z) are ordinary Cauchy integrals
whose properties are discussed extensively in Ref. 5.
They are sectionally holomorphic with the line of
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discontinuity on the real positive axis and have
definite limits W5, (¢) for z — ¢ € (0, o). These follow
from the fact that w(41,t) possess continuous
derivatives.

From what has been stated, we can now conclude
that #(z) given by Eq. (18) has singularity of dis-
continuity on the real axis and, if 2 > 0, two simple
poles at z = +z,, while i#(z, t) defined by Eq. (17) has,
in addition, two simple poles at z = 4t In the
remaining region of the complex plane, they are
analytic.

As seen from Eqs. (13) and (15), however, these
two functions should, by definition, be entire functions
of z. Consequently, the singularities mentioned above
should be removable. The discontinuity on the real
axis disappears if #y(z) of Eq. (18) satisfies the con-
dition that i (1) = (1), —o0 < t < oo, that is, if
the equations

1 F(“) — N+
A+(t)( f(t) —e tlp+l(_t) s 1(’))
1 () , . o
- (=1 — ¥,
o )( J(t) = ¢ y(—1) — o (r))

t >0, (24a)

1 () » O ()
ro (270 = i - ev,00)

1 ([(a) » -yt
A()( J(@O) — e W(—1) —e —l(t))a

t <0, (24b)

hold. The simple poles at z = 4z, become removable
if the numerator in the right-hand side of Eq. (18)
vanishes, namely, if

[I‘(O‘)/A]f(izo) - e:onlP‘—e—l(:FZo) — Y \(£z,) = 0.

(25)
Of course, Eq. (25) is not needed in the case 1 < 0.
The simple poles at z = +¢ of d(z, t) necessarily
vanish due to Eqs. (24). The proof of this assertion
can be carried out in a manner similar to that in Ref. 6
and, therefore, is not given here.

Since A*(¢) = A~(t), we may write
AX(1) = y(Ne=™, y(1) = A1),

o
o) =~ 1 20
2i  AT(p)
 tan-t = sin (31 — o)r] (26)
17" — kcos [3(1 — a)m]’
A

~ D) sin ()1 — o]

for t > 0. Here we choose the branch of tan—! such
that 6(f) varies continuously in 0 < < 400 and
tends to zero as ¢ tends to infinity. Hence, 6(t) < 0 for
A 2 0. Now we can rewrite Eq. (24a) as

IP._,_I(I) . e‘ziﬂ(thy:l(t)
= 2" sin 6(r) e {e ¥ (—1) — [T()/A1F ()},
t >0, (27a)

while, taking Eq. (22) into account and changing
the variable 1 — —1, we have, from Eq. (24b),

1{/‘11(1) _ 821?6()‘,)1};:1(’)
= 2ie"? sin 6(t) e e WV_\(—1) — [D(@)/A]1f(—=1)}.
t>0. (27b)

Equations (27) turn to be the so-called inhomogeneous
Hilbert problem if their right-hand sides are assumed
to be known. In order to solve the problems, a
particular solution of the corresponding homogeneous
Hilbert problem

X+(t) — e2i0(t)x—(t),

0<t<ow, (28

is required. The solution which is suitable for our
purpose® is

X(2) = 0(z) exp T(2), (29)
where
re == [, (30)
11> 0,
Q(z)={f, zzo. (31

Due to our choice of the branch of tan™, 6(¢) =
O(*™) for 1 3> 1, so that I'y(z) and subsequently X(z)
exist and are holomorphic in the plane cut along the
real positive axis. The function X(z) has no zeros in the
cut plane, and, for [z| » 1,

o(lz[7), 2>0,

X(z) =
@=lom, <o (32)
Nearz =t =0,
. const. + const.
X@) < Dy 1X0IS s 69
Moreover, it is useful to note the relation
A
—ﬁ A>0,
X(2)X(—z) = {z3 — 2* (34)
A(z), A <0,

which is proved in Appendix B.
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Substituting Eq. (28) into Eqs. (27) and using
Plemelj’s formula, we can obtain the solution of Eq.
(27) in a usual manner.? For later convenience, we will
write the solutions in the following forms:

Vi(2) = %Lw %’ p(1) dt

+ Gu(2) + au X(HA), (35)

in which we have defined

_ (€*Psin O _

v = (o) € FD 09
[ X(=1e™ sin 6

o = (SR, (37

A o ,i0(t) o
6u(z) = — l(a;;)r((z)J; e sin 6(¢) -

” dt
t
)y——,
XH) HF )t —z
(38)
while a,, are constants to be determined later and

I, >0,

0, 2<0, (39)

HQ) = {
that is, if 4 < 0, the last term in Eqgs. (35) vanishes.
From Egs. (35) with z = —¢, we now have a set of
integral equations for ¥',,(—t) or, by the definitions
of Eq. (36), for y_.,(#), which we write simply as

Yo = SYPz1+ Lua- (40)

Here S denotes the integral operator defined as

1 J‘ © h(t)h(t)e )
0

Sy =
v t4t

p(i)dt', 0<t< o,
41

o™

and

gua(t) = h(){Gr(—DIX(—D)]F + an,HA)e ™ (42)

In spite of its appearance, i(t) > O for t > 0 (see
Appendix C), whence S is a symmetric operator.

Equations (40) have been derived from Eqs. (24).
Now we should show that the converse also holds.
For this, we shall first prove that Eqgs. (40) possess
unique solutions for given g_,(¢). Note that g.;(¢)
contain unknown constants a,, .

It is well known that if the norm of the operator S
is less than unity, Eqs. (40) have a unique solution
which can be expressed in Neumann series. Indeed,
Appendix C shows that S is less than 1 in norm as an

operator in L%(0, c0),

HS”Lz(O,w) < la (43)

for all real A excepting the case i* < A < 0 with
0 < o < a*, where a* == 0.27 and A* is a negative
constant depending only on «. The values of A* for
some « are given at the end of the Appendix C. We
will not consider the exceptional case in the following:
We have not been able to prove Eq. (43) for this case.

Now note that g(r) € L*(0, o0). Hence the successive
iteration defined by

¥ =0, pA=Spi+¢g., i=123-",

(44)
converges in L*0, o), and ngfl)(t) provides the ith-
order approximation of the solutions v, ().

The convergence in the L? sense suffices for all our
purposes. Thus, let us define ¥l (2) by Eq. (35) with
v in place of y,,. Since i) € L2(0, o) and since
if z is not on the real positive axis, h(t)e”*[(t — z) €
L2(0, o) for ¢ and is holomorphic for z, then ‘I";f{(z)
exist and are holomorphic in the plane cut along the
real positive axis. Moreover, P — ., in L2(0, ),
so that ¥9(z) converges uniformly for z in the cut
plane. Hence the limits ¥',,(z) is also holomorphic
in the cut plane. On the other hand, it is easy to see
that the function v(t) defined by v = Sy with any
y € L*0, o) is continuous and has continuous
derivatives in 0 <t < oo, where § is an arbitrary
positive number, and, by Schwartz’ inequality,

()| < C liwlizo, ) »

where C is a constant depending only on 4, 4, and a.
Similar inequalities hold also for derivatives of v(t).
Thus y$)(¢) is continuously differentiable and, by Eq.
(45), uniformly convergent in 0 < 7 < co. It then
follows that the limits ¥, (z) of ¥'$}(z) possess definite
values W& (1) for # > 0 and that, in virtue of Eqgs.
(40), Eqgs. (24) are satisfied. Consequently, we can now
conclude that Eqs. (24) and (40) are equivalent.

Finally we should point out that the unknown
constants a,, which appear for 2 > 0 can be deter-
mined by Eq. (25) if v, are known. In fact, substitu-
tion of Egs. (35) into Egs. (25) gives rise to a set of
algebraic equation for a.; .

0Lt < o0, 45)

IV. APPROXIMATE SOLUTIONS OF EQ. (2)

The solution of Eq. (2) can be found if the inverse
transform of #i,(z) is known. Since #,(z) is now an
entire function, we can choose any path parallel to the
imaginary axis as the integration path in the inverse
Laplace transformation. For simplicity, we take the
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imaginary axis. Then, in view of Eq. (8), we get

o) = lim = [ e ]
e —R‘—'oﬂ 2mi J-irn  A(2)
(f(z) - f‘?’) [, (~2) + e"f"_l(z)l) dz,

(46)

where the limit is to be understood in the L? sense
since ¢ € L¥(—1, 1).

A more convenient form of the solution can be
found by the deformation of the integration path.
This is carried out in Appendix D for the case when
F(z) can be decomposed as f(z) = fi(z) + fo(2) in
which fi(z) and f,(z) are holomorphic with the
possible exception of a simple pole at z = 0 and, for

zZ—>» 0O,
e—Rez
0( ), Rez >0,
|z|

eRcz
0( ), Rez < 0.
2]

filz) =

(47

folz) =

Then we can have

@(x) = 1; L ﬂ%(’) [e™A\(1) + e "Ax(n)] dt
+ (a6 + a,e ") H(A), (48a)

with

b X(=t

L'(e) h(—1)

A X(=9

L(a) h(—1)

A1) = ?’ﬂ( 1) — /i),

(48b)

Ay(t) = pa(t) — fa(—1),

1 - o
“= 2z, X(20) X(— Zo)(F(oc) +1(—20) fl(zo))

eV _(~—2zo) — fz(“ Zo)) .
(48¢)

P (
22y X(zo) X(—zp)\I'(w)

Equation (48a) is valid for |x| < 1.

It is clear that if () are replaced by (1), Eq.
(47) gives the ith-order approximation of ¢(x).

In the Kirkwood-Riseman equation, 1 < 0, and the
case f(x) = 1 is of interest since ¢(x) is related to the
translational diffusion coefficient D:

1
f ¢(x) dx = ¢/D, (49)
—1
where ¢ is a physical quantity specific to the fluid (for
details, see Ref. 1). In this case we see that

f@) = (¢ = ez, (50)

whence we have

(@) =fi(—2) = =7z, (51
Consequently, the zeroth-order approximation (y., =
»& = 0) yields

f PO(x) dx = — fw sin 60) e *sinh t dt,
1

r(1) 2

while in the first-order approximation (y,; = Pl =
gi—l)s

fl P (x) dx
=fl ¢(0)('x) dx
22 © sin 6(t) X(—1)
al(e)Jo  th(t) k(1) [g1(8) + ga(D] dt,

(33)
where g, are given by Eq. (42) with a,, = 0.

Y. ASYMPTOTIC DISTRIBUTION OF
EIGENVALUES

Let us consider the eigenvalue equation ¢ = AK¢:
We should put f(x) = 0. Since K'is a positive operator,
we have only to consider the case A > 0. Moreover we
can easily see that the eigenfunctions ¢(x) are either
even or odd functions, so that the set of integral
equations (40) reduces to a single equation

y = %Sy + ag, (54)

in which
y=v,==xy,, a=a.=+a., (55
g(t) = h(e™. (56)

Here the signs + and — correspond to the case of
even and odd eigenfunctions, respectively.
Obviously, Eq. (54) has the solution of the form
p = ay,, (7
where v, is the solution of Eq. (54) for ¢ = 1. Then
Eq. (25) becomes, by use of Eqgs. (35),

X(‘“Zo) 14 I(Zo)

229 _ , 58
T Xe) 120z P
1(zo)=f° i . (59)

This equation serves to determine the eigenvalues of K.
In Appendix E we have shown that

X(—20)/ X(zg) = —exp [}(1 + o)mi],  (60)
being independent of z,. Further, note that z, = »i

is purely imaginary and that ¢, is real. The latter
follows from the fact that § is symmetric and g is

real. Hence [Iy(zy) = Io(—2z,) holds. Therefore, Eq.
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TasLE I. Numerical calculation of 2" and A{".

n=1 n=3 n=35 n=7 n=9
a=0.1
Ao 0.1405(+1) 0.9410(4+1) 0.1660(+2) 0.2345(4+2) 0.3008(+2)
A 0.1016(4+1) 0.9329(+1) 0.1656(+2) 0.2342(+2) 0.3006(+2)
% 27.6* 0.86 0.27 0.13 0.076
o =0.3
A0 0.5230 0.2101(+1) 0.3244(4+1) 0.4233(+1) 0.5131(41)
AD 0.4413 0.2089(+1) 0.3238(4+1) 0.4229(+1) 0.5128(+1)
% 16.7 0.59 0.19 0.089 0.053
o =0.5
A 0.3062 0.7706 0.1046(+1) 0.1262,(41) 0.1447,(4+1)
A 0.2784 0.7678 0.1045(+1) 0.12615(+1) 0.1446;(+1)
% 9.07 0.35 0.11 0.053 0.031
o= 0.7
A0 0.1662 0.2802 0.3356 0.3753 0.4071
A 0.1594 0.2797 0.3354 0.3752 0.4070
% 4.06 0.17 0.052 0.026 0.014
a=0.9
Ao 0.5168(—~1) 0.6095(—~1) 0.6467(~1) 0.6710,(—1) 0.6893,(—1)
A0 0.5116(—~1) 0.6092(—1) 0.6466(—1) 0.6710,(—1) 0.6893,(—1)
% 1.00 0.043 0.013 0.006 0.003

2 (4100 — 2y x 100/4(0),

(58) can be rewritten as
3n = D+ (1 + o)m — 2(»),
n=1,23---, (61

where n is odd (even) for even (odd) eigenfunctions
while

x(v) = —arg [l & I(z,)]
= tan~? l:(j: z J:o h)e () dt)

v

T 124 2t
1 [ th(f)e ()  \L
x(l:&:-—f —(2—)&—”’—;’(—)01,> ] (62)
m Jo "+

in which the branch of tan! is chosen such that
lx(M| < §7. Appendix F shows that for » 3> 1
< O(™).

Iz < 00™), (63)

d
o 1)

This implies, with |x(»)] < 37 taken into account, that
Eq. (61) has one and only one solution », in the inter-
val (0, o) for large n, which takes the form

v, =3n — Dm + 31 + )7 + 0. (64)
Substituting this into Eq. (23), we now obtain an
asymptotic formula of eigenvalue of the operator K:
_ (e sin [}(1 — )]

w

x(n——l_n__}_1+oc
2 8

An

ﬂ)H+ o(nTL—) (65)

Since z(v) = 0if y, = 0, the first term on the right-
hand side of Eq. (65) gives the zeroth-order approxi-
mate eigenvalue 1)”. The remaining term gives the
correction for 1. Numerical computation of the
first-order approximate eigenvalue A", which is
given by putting y, = g in Eq. (62) and solving Eq.
(61) numerically, shows that the correction is within
19, for n > 3 when 0.1 < « < 0.9 (see Table 1).

APPENDIX A: PROOF OF EQ. (21)

Putting u = 12, we get

w g © u%(z—l)
2 dt =J du, Al
_L £ — 22 0o u—2z° (AD
Consider the contour integral
ghtan)
[S=ae (A2)
c 5 — 5

where £871 is a single-valued function with 0 <
arg &£ < 27 in the £ plane cut along the real positive
axis, and C denotes the contour consisting of two
circles |&l =R and |& =6, R> 4, and of two
straight lines 6 < & < R connecting the two circles
above and below the cut. Suppose that s is not on the
cut. Then, for sufficiently large R and small 8, we
have, by the calculus of residues,

$a—1)
f ”’; dE = 2mishe),
¢ — S

(A3)
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The integrals on the circles vanish in the limit R — o,
0 — 0, and the sum of two integrals along the cut

reduces to
@ %(a—l)
mile— “)f du,

u—=_s

(A4)

since &F* ) = e erilad) s g pelow the cut.
Thus Eq. (21) follows with s = z* for 0 < argz < =
and s = z%*" for = < arg z < 2.

APPENDIX B: PROOF OF EQ. (39)
Equations (26) and (30) give
1 f ® In [AT@)/A~(1)]

t—z

Py(z) + Fo(—2) = dt. (BI)

27i

(i) 4> 0: Recall that the function A(z) is holo-
morphic in the plane cut along the real axis and pos-
sesses two simple zeros +z, on the imaginary axis.
Define the function

Ay(2) = 22A(@)/(2* — z3). (B2)
This is also holomorphic in the cut plane but has no
zeros, and thus
A(z) > 1 (B3)
uniformly for z — co. Since AT(£)/ A~(t) = A{(1)/A5(t)
on the cut and since A*(r) —1 for t— +o0, Eq.
(B1) becomes
In Ao(§)

27miJes E— 2z 2171 e

where X, (Z_) represents the stralght line —o0 <
& < o above (below) the cut. In view of Eq. (B3),
In Ay(z) — 0 for z — o0, so that the path Z,(Z_) can
be closed by adding a large semicircle in the upper
(lower) half-plane, and the integral of Eq. (B4) is equal
to the residue at £ = z, namely, to In Ay(z). Hence

X(@X(~2) = =z exp [Tu(z) + To(~2)]
=A@ — .

(i) A < 0: In this case we can take Ay(z) =
whence Eq. (34) is obvious.

—d§, (B4)

(BS)
A(2),

APPENDIX C: PROOF OF EQ. (43)

The function A(¢) of Eq. (37) is positive and bounded
for ¢ > 0. In particular, we can have

A>0, 0<a<l,
0<h(<1l—¢ (A<0, a*<a<l,
oa* = 0.27,

(8))

where ¢ is a small positive number which does not

depend on the values of 2 and ¢. The proof will be
given at the end of this appendix.
Now we shall evaluate the inner product
(o Y)rro.x
1 f@ fw h(h(t e p(t)p(t’)
t+t
with arbitrary ¢, y € L*(0, o0). In view of Eq. (Cl),

dtdt, (C2)

(50,1 < O [ [ OO -
7 Jo Jo t4t
Writing the integrand on the right-hand side as
9] (¢ + O 1w ¢+ o7 et (4

and applying Schwartz’ inequality, we get

oL ]
x [ L (D)2 L t-f—_t(;) dt’dtT

<(L— 6)2 ol 220,000 191 220,01 »
where we have used the relation
= Zf du = 7.
o 14 u?

w 3 w ,—%
[l [ 25
o t 4+ '\t o 14+ u

(C6)

Equation (CS5) assures the validity of Eq. (43) within
the restrictions imposed on Eq. (Cl) for the ranges
of 2 and «.

There remains to prove Eq. (Cl). First note that

¢ sin 6(1) X(—1)

(S, v)| <

(€5)

0=
= Qé;)‘) sin 6(1) exp Z(1),
Z(n = — %f{?a(i_)tz dr, €N

which follows from the definition of X(z) in Eq. (29).
Due to our choice of the branch for 6(z), sin (1) $ 0
for 2 2 0 while Q(—17)/Q(¢) = F1 for 2 2 0,as seen
from Eq. (31). Hence

h*(t) = |sin 6(1)| exp Z(1), (C8)
which implies A(z) > 0. Further, integrating by parts,

we can obtain
-1 f 6'(¢') In
x )

(i) 4 > 0. Because of our choice of branch, 0'(+) > 0
for all # > 0. Hence Z(¢) < 0. Z(t) = 0 occurs only at

t+t dt’
-t

() = (C9)
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t = 0and ¢t = oo, but |sin 6(0)| = sin [{(1 + )7} < 1
and sin 6(o0) = 0. Moreover, h(t) is continuous. Thus
Eq. (C1) holds for all values of A > 0and 0 < a < 1.

(i) A < 0. In this case Z(t) > 0 since 0'(r) < 0.
It is convenient to change the variables

t=klfuf, 1 =|kful, p=(01—-0o)",
k = An/T(a) sin [$(1 — a)}7] < 0,
h(t) = ho(u), Z(1) = Zy(u).

Then hy(u) and Z,(u) are independent of 4 (or «), and
we have

(C10)

Zy(u)
_1 (" sin [3(1 — o))
wJo {u' + cos [}(1 — a)7]}® + {sin [§(1 — a)7]}?
u +uf|
X In R du
i [ — © B B
< sin [§(1 a)ﬂ]f 1 | + u d
™ o u® +1 |uf + u?
in 141 —
—snbd — oy, (C11)

Divide the integral Y(u) for 0 < v’ <u and u <
u' < oo and put x = 'fu and x = ufu’, respectively.
Then

i u 1+ xf
Y(u) = + In dx.
@) J; (u2 +x2 1+ xzuz) l 1 —x*f
(C12)

Consider first the case 0 < u < 1. It is readily proved
that

W w11 Lot
W x® T 2xu 2x ) T4+ xWE T4 xET 2]
0<x<1, 0<u<l, (C13)
and
1 B
filnilix_ dx
o 2x 1 —xf
1
= Xl —a) 11n}1ﬁ dx
0 X 1 —x
= (1 — W, (C14)
1
f L Sln (1 + xP) dx
ol + x
1
1
< In (1 ‘) dx = In2, (Ci15
~L1+x2“( +x)dx=4nin2, (CI5)

(C16)

whence
Y() £ G 1n2 + Sem)m
For 1 < u < oo, we get, instead of Eq. (C13),
u 1 1 u u 1

ua,+x2_1+x2'—5’ ]+u2x2—ﬁ=;’
0<x<1, 1<u< o (CI8)

Therefore, Eq. (C17) applies also. Consequently, we
can have

hi(t) < sin [3(1 — o)m]
x exp {sin [}(1 — o)7][{ In2 + (1 — a)s]},
t>0, (C19)

for all A <0 and 0 < o« < 1. This estimate justifies
Eq. (C1) with a* == 0.45. A more precise estimate
should be found to improve the lower bound o*.
Instead, however, numerical computation of A(¢) has
been made. The result is a* = 0.27.

For0 < o < a*, h(t) > 1, actually, for some values
of ¢ and, therefore, Eq. (C1) is violated. However, by
examining the proof of Eq. (C6), we can easily see that
Eq. (43) is valid only if

h(t)et = ho(u)e *PF < 1 (C20)

holds for ¢ > 0. Since A,(u) is independent of A and is
bounded [see Eq. (C19)] and, moreover, since the
set of points u such that h(u) > 1 is bounded and
strictly bounded away from the point ¥ = 0, which
follows from the fact that Zy(u) =0 only at w =0
and oo while sin 6(0) = sin [}(1 — «)7] < 1 "and
hy(u) — 0 as u — oo, then we see, from the second
form of Eq. (C20), that the inequality holds in Eq.
(C20) for sufficiently large ||, that is, for 1 < A*
with negative constant 2* depending on «. From the
numerical computation, —1* =7.0, 3.1, 1.3, and
0.3 have been found for « = 0.1, 0.15, 0.2, and 0.25,
respectively.

(C17)

APPENDIX D: PROOF OF EQ. (48)

Suppose first that 4 < 0. Then the integral in Eq.
(46) can be written term by term as

f P ACI U T P ) P8
-z A(2) D(e) J-ir A(2)
i i o €Y _1(2)
T T@J-ir A2

since each integral by itself has no singularities on the
path of integration. Assume that the decomposition
of f(z) stated in the text is possible. Then the first
integral of the above can be divided again into two
parts containing fi(z) and fy(z), respectively. Each
integrand has no singularities also in the plane cut

dz, (D1)
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along the real axis. Hence Cauchy’s theorem verifies
that

f xzjl(z) _j ,,;zfl(z)
i A(2) Crt A(z)
+£ e A+(t)d J06+e A dz,
(D2)
f erzf;(z) =f emz_fi(_zg dz
-ir  Az) c,.  A72)
' at _fi(_i)_ —_ wz_@
'"J; ety fq,_e A
(D3)

where Cj,,(Cp_) and C;.(C;.) denote the arcs |z| =

and |z| = d with 0 < argz < im (—im < argz < O)
In view of Eq. (48) and well-known Jordan’s lemma,
the integrals on Cp+ vanish in the limit R — oo for
x < 1, while the integrals on Cyt — 0 as 6 — 0 since
Fi(2)]A(2) = 0(|z|"%) near z = 0. Thus we see, using
Eq. (26), that

zzj2(z) ? ot 1 — __1__
Lm A ‘ﬁ ¢ (A+() A‘(r))f o0 1
P 2 SN 9(2) 0(2) ~
= 2IJ,; ) L(1) dt.

Similarly, with the aid of integration paths lying in
the left half-plane Re z < 0, we obtain for x > —1

J_ie /_{2% dz = —fofm (Ai(t) A )

w0 o(t) .,
=—2iJ-e (sin 6(1)
0

) Jfo(—1)dt.

As for the second integral of Eq. (D1), we observe
that e=*¥',,(—z) possesses entirely the same properties
as fi(z) in the right half-plane Re z > 0. Hence the
deformation used for Eq. (D4) is valid. Finally, note
that e’W_;(z) resembles f;(z) in nature, for Rez < 0,
which completes the proof of Eq. (48) for 1 < 0.

In the case 4 > 0, we have only to add the contri-
butions from the simple poles at z = 4z,. The
residue calculation will be greatly simplified if one
makes use of Eq. (34).

(D4)

)fz(t) !

(D3)

APPENDIX E: PROOF OF EQ. (60)
Making the transformation ¢ = vu, we get
© Ot ®
_2_Zof 00y 2 ( Olu).
mJo t°— zp mJdoou? 1
~—sin [3(1 — a)7]

U™ — cos [3(1 — o)m]

du,

(ED)

Oy(u) = tan

Divide the integral for0 < u < 1 and for1 < u < o0,
and change the variable « to ¥~ in the latter integral.
Then Eq. (E1) becomes

1 0 ~1
T Jo u? +1
On the other hand, it is easy to show that
O(u) + Bo(u™") = —3(1 + )7 (E3)
Thus the integral of Eq. (El) is identical with
1 + )i, (E4)

irrespective of the value of z,. This together with the
definition of X(z) by Eq. (29) completes the proof.

APPENDIX F: PROOF OF EQ. (63)

Putting t = wu, h(t) = ho(u), and po(t) = @(#) in
Eq. (59), we get
I(zg) = I,(») =f howe "qo®)
0 u-+ti

Evidently Ay(u) is independent of v, and ¢y(u) is a
solution of the equation

(F1)

@Yo = £S0®0 + £o, (F2)
go(u) = ho(“)e_vus
© ho(u)ho(u)e™ 4 ,
Sopn = [T oy (k)
0 u-u

By definition, 0 < /y(u) < 1 — € follows from Appen-
dix C so that [ Syl ze0.) <1 — ¢, |lgoll < »~2, and
from Eq. (F2)

lpoll = (1 F So) gyl
< = 1S gl < (@b (Fa)

Hence the first part of Eq. (63) follows from the
definition of y(v) and the fact that

1(zo)| = |1s0)]
< [ ntwe 1y du

< llgoll ol < (en)™ (F5)

Now differentiate Eqs. (F1) and (F2) with respect
to v:

i) = [ ) [ 800,
0 u-+i 0 u i
(Fe6)

¢(’) = :’:SO‘F(I) +f05
fy(w) —go(u)(:!: ] eo(u)go(u) dut + u). (F7)
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Clearly, | fol < lgoll? 1@l + llugoll = O(»~1), whence
also | ggll = O(»%) and, thereby,

o) < f " ga(u) o) du

+ f " eo()lgs) | du = 067,

This and Eq. (F5) then assure the second estimate of
Eq. (63).
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Relaxation Spectrum of Phonons: A Solvable Model
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The approach towards equilibrium of a slightly disturbed phonon gas is analyzed in terms of its
normal decay modes. It is shown that a simplified model permits a complete solution of the linearized
phonon Boltzmann equation, The mode! considers 3-phonon normal collisions as the relaxing process
and assumes a nondispersive isotropic elastic continuum. In analogy with the Maxwellian molecule
model, the coupling term is assumed independent of the frequency. The spectrum of relaxation rates
found has no discrete modes except for one trivial solution of rate zero. Above this value there is a gap

and then a continuum extending to infinity.

I. INTRODUCTION

Most theories describing the relaxation towards
equilibrium of a given statistical system consider
the case of exponentially decaying configurations.
These configurations, also called ‘“normal decay
modes,” are convenient to treat because they give the
otherwise integro-differential problem the form of
an eigenvalue equation. It is important for this purpose
to assume that the system is left alone to decay.
The operator in the eigenvalue equation is a non-
linear integral operator usually called the collision
operator. This difficult nonlinearity may be avoided
by considering only small departures from equilibrium
and keeping only linear terms. However, this simplifi-
cation usually does not render the problem soluble.
On the contrary, the mathematics remains quite
complex and most attempts to solve such problems
have been unsuccessful.

To make the eigenvalue equation explicitly soluble,
some rather drastic assumptions about the collisions
have been made in some cases. For example, such an
approach has been taken in the theories of dilute
gases and neutron transport. In the former case the
molecules are assumed to repel each other as the

inverse fifth power of the distance, thus making the
collision rate of an individual molecule independent
of its velocity.! Molecules obeying this power law
are called Maxwellian molecules, after J. C. Maxwell
who first studied them.? In the latter case, the inter-
actions of a neutron with the medium were assumed,
on the average, not to change its speed. For both
cases the full spectrum has been given in detail
and the corresponding eigenfunctions have been
found.® Although these assumptions are unrealistic,
they provide a framework for the study of the
structure of solutions to the actual eigenvalue equation,
and sometimes they may even be used as an approx-
imation to a particular real physical situation.

Our purpose in this paper is to apply a similar
approach to a phonon gas under somewhat restricted
conditions and to solve for the spectrum and eigen-
functions of the resulting collision operator. We will
see that this solution can be obtained if the 3-phonon
matrix elements are assumed independent of wave-
number. Phonons obeying this law will be called
“Maxwellian phonons’ in what follows, owing to the
similarity of this model with the Maxwellian molecule
model mentioned above.
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I. INTRODUCTION

Most theories describing the relaxation towards
equilibrium of a given statistical system consider
the case of exponentially decaying configurations.
These configurations, also called ‘“normal decay
modes,” are convenient to treat because they give the
otherwise integro-differential problem the form of
an eigenvalue equation. It is important for this purpose
to assume that the system is left alone to decay.
The operator in the eigenvalue equation is a non-
linear integral operator usually called the collision
operator. This difficult nonlinearity may be avoided
by considering only small departures from equilibrium
and keeping only linear terms. However, this simplifi-
cation usually does not render the problem soluble.
On the contrary, the mathematics remains quite
complex and most attempts to solve such problems
have been unsuccessful.

To make the eigenvalue equation explicitly soluble,
some rather drastic assumptions about the collisions
have been made in some cases. For example, such an
approach has been taken in the theories of dilute
gases and neutron transport. In the former case the
molecules are assumed to repel each other as the

inverse fifth power of the distance, thus making the
collision rate of an individual molecule independent
of its velocity.! Molecules obeying this power law
are called Maxwellian molecules, after J. C. Maxwell
who first studied them.? In the latter case, the inter-
actions of a neutron with the medium were assumed,
on the average, not to change its speed. For both
cases the full spectrum has been given in detail
and the corresponding eigenfunctions have been
found.® Although these assumptions are unrealistic,
they provide a framework for the study of the
structure of solutions to the actual eigenvalue equation,
and sometimes they may even be used as an approx-
imation to a particular real physical situation.

Our purpose in this paper is to apply a similar
approach to a phonon gas under somewhat restricted
conditions and to solve for the spectrum and eigen-
functions of the resulting collision operator. We will
see that this solution can be obtained if the 3-phonon
matrix elements are assumed independent of wave-
number. Phonons obeying this law will be called
“Maxwellian phonons’ in what follows, owing to the
similarity of this model with the Maxwellian molecule
model mentioned above.
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II. THE MAXWELLIAN PHONON MODEL

The situation we wish to describe is that of a phonon
gas that is initially slightly perturbed from thermo-
dynamic equilibrium. We then watch the system decay
and analyze the change in occupation number with
time as a function of wave vector.

Different processes can contribute to the decay of
the system. Among them, most important are imper-
fection and boundary scattering, and phonon—-phonon
interactions. Of these effects the first two can be
neglected if we assume a large and pure system at not
too low temperatures. We are left with phonon-phonon
interactions which appear in the formalism as terms
of order higher than the second in the Taylor expan-
sion of the potential energy of the system. Thus, they
are a consequence of anharmonicity. In our treatment,
we will consider only 3-phonon interactions that
conserve wave vector. These interactions appear
to be predominant at temperatures much lower than
the Debye temperatures and at long wavelengths.t
If N(q) is the occupation number for wave vector q,
the total transition probability per unit time is given,
with these assumptions, by®

dN(q)

= CN(q),
5 (@)

(1)

where C is the nonlinear collision operator as defined
by the expression

CN(g) = ﬁ[ f dq' N@N@)N(g + 1)

y ( Lo 1 1 ___ 1 )
N(q) N() N(@N(q) Nq+4q)

x [M(q + q'; 4. 4)I* o[e(q) — €(q') — e(q + q)]

41 f dq' N@@N(@)N@ — ¢)

y ( A S B 1 )
N(q) N@) Ng-—4q) N(@q)Nq-q)
X IM(@: €, 4 — Q) Ole(@) + e(q — q) — e(q)]].

Here, V is the volume of the system and 4 is Planck’s
constant. M(q,; 4z, qs;) is the matrix element for the
process in which a phonon of wave vector g, goes into
a phonon of wave vector q, and a phonon of wave
vector qg, as given by the third-order term in the
expansion of the potential energy in terms of creation
and annihilation operators. The Dirac ¢ function in
the integrands express conservation of energy for the
allowed transitions. Note that a time-independent
solution of (1) is the Bose-Einstein distribution, as

can easily be checked. Polarization has been ignored
in this expression.

Further progress towards the solution of (1)
requires the specification of the dispersion law e(q).
Since we are mainly interested in long wavelengths, we
will assume that the medium is nondispersive, a
behavior known to be followed for small wave vectors.
We also assume that the medium is elastically iso-
tropic. The conservation laws are satisfied with these
two assumptions only when collisions are collinear,
a condition that will make the integral in (1) one
dimensional. These assumptions are quite restrictive,
and we adopt them solely for the purpose of simpli-
fying the equations.

The next step is to linearize the collision operator.
This is done by introducing the perturbed Bose
distribution

—1
Vo = [ +@e e ((2) —1] @
kT

and, upon substitution in (1), retaining only terms of
first order in the »’s. We have thus introduced normal
modes, since the small perturbation of statistical
equilibrium depends exponentially on the time. 4 is
the relaxation rate of a particular decay normal mode.
Since the medium is isotropic, we expect to find no
preferred direction for the collisions. This is actually
the case, as it is easily shown by writing »(q) as a
function of the magnitude of the argument times a
spherical harmonic. The angular function gets
factored out after integration of the delta functions in
(1), thus making the eigenvalues independent of the
angular quantum numbers. We then get for the radial

part p(q)

2p(q) = —2

Ood ’ M r; , "2
e (L q' Mg +4q;9 q)
N 9(q+4)
q sinh sq’ sinh s(g + ¢')
X [p(q) + p(g") — p(q + q')]
q
[ g a0 - o
» q9(q—4q)
q sinh sq’ sinh s(g — ¢’)

sinh sq

sinh sq

x [p(q) — p(q) — plq — q'n),

where s = /ic/2kT and q and ¢’ are the magnitudes of
the corresponding vectors, k is Boltzmann’s constant,
and c the velocity of sound in the medium.

In the last expression the right-hand side can be
made a single integral if the range of the variable ¢’
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is extended to negative values. Together with this
extension of the variable, we define |M(g;; g5, ¢5)|2 to
be an even function of its arguments and p(g) to be
odd. This last definition is, in fact, a condition on the
eigenfunctions that they vanish at the origin. It is seen
from (2) that this condition avoids the appearance of
a chemical potential. We also use the fact that for
collinear processes M is symmetric with respect to
interchange of its arguments. All this and some
rearrangements give the equation the form

Ap(q) = f_ dq' IM(q,49', 9 — q")I°

vV
167h*c
N ACEK'D)

q sinh sq’ sinh s(q — ¢')
X [p(q) — p(q') — p(q — 4]
Because of the symmetry of the kernel, the last two

terms in the square bracket are equivalent, and we can
give this expression the more convenient form

sinh sq

we(g) = T@glg) — 2 f_ K@, (@) da's (3)
with

i

K(g, ¢) = 5 IM(q, ¢, 4 — 4) ———,
sinh s(g — ¢q")

® ~ g sinhs ,

r@ = [ K@q) "2 g,
—o sinhsq" ¢

and
qp(q) 4mhc® 2
(q) = - NS 5

sinh sq vV  (kT)

This equation has been published previously by one
of the authors.® The integral operator on the right is a
nonnegative linear transformation whose eigenvalues
can be chosen all real. This constitutes an H theorem
for the system since it means that all modes decay.
The eigenvalues thus lie on the real line between zero
and infinity. The eigenfunctions are orthogonal to
each other.

The detailed structure of the spectrum depends on
the choice of |M(qy, ¢, qs)|?%. For long wavelengths,
this quantity is proportional to its arguments.” This
makes (3) quite hard to solve since the assumption of
M being an even function of the arguments introduces
absolute values in the kernel. To solve Eq. (3), we shall
then assume that |M(q;,q,,qs)|> has a constant
average value that we shall denote by (M?2). The
coupling between individual phonons is thus made
independent of their energy, in analogy with Max-
wellian molecules. This is not a perfect analogy since
our assumption does not give a frequency-independent

collision rate. Nevertheless, for the sake of giving a
name to our model, phonons allowing this assumption
are then called Maxwellian phonons. We shall see in
the next section that their normal decay spectrum can
be analyzed in full detail.

III. RELAXATION RATES AND
RELAXATION MODES

An immediate solution of (3) independent, of the
form of the interaction is p(q) = ¢. The orthogonality
of this solution to all others implies that the energy
content of each normal mode is zero, a statement of
conservation of energy for the system. This solution
does not relax since it corresponds to the eigenvalue
A =0. It merely modifies the temperature of the
system, as is readily seen by substituting the eigen-
function in expression (2). In our case the eigenvalue
zero is expected to be nondegenerate since, under the
particular assumptions adopted, conservation of
momentum coincides with conservation of energy.

For Maxwellian phonons, as defined earlier, (3)
reduces to

Aag(g) = 3(=* + s*¢")p(q)
_ 2S2f°° q — q’ oy d 1’
— sinh s(qg — q') 7(q) dq

i = p|(M?).
We have performed the integration in the multiplier

I'(g) and transferred a constant to the left-hand side.
Taking the Fourier transform of (4), we get

4)

where

dx?
with

37 )
T 4 Ga—m))\y=0, (5
(cosh2 (wx/2si+ G ))’P ®)

0
»(x) =f ¢(q) sin gx dg.
This is a Schrodinger-type differential equation for a
shallow symmetric potential well. Since the potential
is an even function, the solutions to this equation can
be classified into functions of even and odd parity.
Since parity is preserved under Fourier transforma-
tion, we need only the odd solutions of (5), given by

= sinh 7—T—)S) cosh™ (W—x)
i) = sinh (7 ™

TX

X 2FI(—I + io, —1 — ia; 3; —sinh? (—)),
2s
(©)
oF is the hypergeometric function and

o = 7133 — )k
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A solution that vanishes at infinity is found if the
series is terminated after the first term. This corre-
sponds to o = i, or A = 0. The Fourier transform of
this solution is

79 = (

i 2
15s ) q (7a)

sinh sq’

774

which is the same solution found by inspection of
Eq. (3). This is the only solution belonging to the
discrete spectrum. Hence, we conclude that there is no
relaxing normal mode in the discrete spectrum and
that the nonrelaxing solution that corresponds to
energy-momentum conservation is unique.

The continuum spectrum extends from « = 0 to
infinity. In this region the solutions (6) are all real, and
they oscillate for large values of |x|. Their Fourier
transform is given by

7uq) = (2—” (1 + 4o2)(O + 4ad)(1 + a?))_z
S

X [R(q) — R(—q)], (7b)

where
3 55%¢* — 7°(1 + o)
#°  sinh (sq — 7o)

— ma(11 — 4a®)8(sq — o).

In this expression P stands for the Cauchy principal
value. The functions are normalized in the space of
(5), where they form a complete set for odd square-
integrable functions.® They are defined for all real
values of g, but since they are odd, no generality is lost
if the definition is restricted to the nonnegative part of
the real axis.

All the functions (7b) have a pole for g = (n/s)a,
except for the special case of « = }. For this singular
value of g, the unbounded muttiplier I'(g) in Eq. 4
becomes equal to the corresponding eigenvalue .

IV. CONCLUDING REMARKS

(7a) and (7b) may appear hard to work with.
However, in the Fourier transform space of (5) the

mathematics is quite simple. This should allow us to
expand a small departure from equilibrium that
vanishes at the origin, but is otherwise arbitrary, in
terms of the complete set of solutions of (5). The
exponential time factor can then be inserted in the
expansion and finally the whole expression trans-
formed back to wavenumber space. In this way and
under the restrictions imposed by the model, a time-
dependent solution to (1) can be found for given
initial conditions.

The way in which (M?) should be estimated in an
application is still obscure, because the assumption
of its constancy does not agree with the facts. For
long wavelengths it involves an average over a product
of wavenumbers that will probably have to be
estimated on purely physical grounds.

Note added in the proof: The expression (6) can
be given a closed form. Known identities for hyper-
geometric functions permit changing the first argu-
ment of ,F; to —3. It thereby becomes a cubic
polynomial. Apart from a factor, the expression (6)
then reads

v, (x) = cos (amx/s)[% tanh® (wx/2s)
— (% + 44?) tanh(mx/2s)]
+ sin (amx/s) [Sa tanh? (wx/2s) — a1l + o?)].
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It is shown that, for a local Poincaré covariant quantum field theory in which the usual relation
between the TCP symmetry and spin-statistic holds, the dimensionality of space-time should be even.
Further plausibility arguments are presented in favor of the observed dimensionality, on basis of the
following factors: (1) simplicity, (2) relativistic local quantum field theoty, (3) general relativity, (4)
the nature of some observed interactions, (5) classical mechanical force concept.

INTRODUCTION

Recently Rosen' has attempted to show that if
one requires the existence of a TCP operation for an
n-dimensional Dirac equation, then n can only be
even. The basic point of his argument is the following.
Since the Dirac equation corresponds to a double-
valued representation of a (pseudo-)orthogonal
group, one must use elements of a Clifford algebra.
The irreducible set of Clifford matrices of dimension
2™ have a maximum subset of 2m 4 1 anticommuting
matrices. These could be used for either O,,, or O,,,, ;.
Now the TCP operation changes the sign of all the
2m or 2m + 1 coordinates in the respective cases;
hence, in order for the TCP symmetry to exist for a
Dirac type equation, one must have one matrix which
anticommutes in the respective cases with 2m or
2m + 1 anticommuting Clifford matrices. This is
clearly impossible for O,,, ;. One could, of course,
argue that, if one uses higher-dimensional Clifford
matrices, one would have large number of anticom-
muting matrices and hence TCP operation is possible
even for odd dimensions. However, this argument
is fallacious, as the set of such Clifford matrices is
reducible. One can in this case by a unitary trans-
formation reduce the higher-dimensional equation
into the direct sum of the lowest-dimensional equa-
tion with itself. To avoid any confusion on this
point, we note that in the general proof of the spin-
statistics theorem? one requires that the fields belong
to irreducible, finite-dimensional real representations
of the covering group of L! (the fields themselves
do not have to be real). These are given by D" @
D*:b and D*-#), Considered over the field of complex
numbers, the first of these are not irreducible.® In
particular, the four-component Dirac equation is
irreducible only as a real representation. The require-
ment of reality of the representations is connected
with the precise form of the assumption of locality
(commutation or anticommutation for spacelike
separations).

One can further clarify this point by considering the
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proof of the TCP theorem in the abstract field theory
approach, where it becomes trivially clear that the
dimensionality should be even. In this approach the
important point is that the operation TCP is con-
tinuously connected to the identity in L_(4, ¢), thereby
connecting the otherwise disjoint real groups L1(4, R)
and L i (4, R). For this connectivity, it is essential that
the operation TCP should have “‘determinant” +1,
which is not the case for odd dimensions. The group
L.(n, ¢) is indeed connected for both even and odd .
To see the essential difference between the even and
odd dimensions, let us decompose L(n, ¢) into its
constituents for the two cases. For even dimensions,

L(n,¢) = L.(n,¢) + PL.(n,c),
L.(n,R) = Li(n, R) + PTL.(n, R),

where P and T are the diagonal matrices with com-
ponents
P= (_1, _15 Tt _1’ +1)9

T=(,1,---,1;=1).
For odd dimensions (n = 2m + 1),

L(n,c) = Li(n, ¢) + 7L.(n, c),
L.(n,R) = Li(n, R) + 6L (n, R).

3

6 and T are diagonal matrices with components
0=(1313.”,1,_1;—1)’
r=(1,1,--+,1;, =1).

The operation corresponding to parity consists in
changing the sign of the 2m spatial coordinates. This
can be accomplished continuously within L1(n, R)
by performing rotations of magnitude = in m orthog-
onal, spatial planes. Parity is therefore not a discrete
operation. The operation of changing the sign of all
the coordinates is thus equivalent to a “parity rota-
tion” followed by 7. The determinant of such a
transformation is clearly —1, and it is clear? that this
operation is not contained in L, (n, ¢). In fact, one
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can go further to give plausibility arguments in favor
of the dimensionality of space-time as four.

Suppose we admit that the dimensionality is even,
N = 2n; then for the “spinor group” (covering group)
we need elements of the Clifford algebra of dimension
2N, Since N is even, one can represent the Clifford
algebra of linear transformations on a vector space
of dimension d = 2". The group of automorphisms of
this space is SL(}d; C); only for N =4 does this
exactly coincide with the N-dimensional Lorentz
group. In any other case, there result considerable
algebraic complications.

Since TCP is a discrete operation, there is another
way of looking at the problem, by studying the
embedding of the discrete symmetry TCP in some
continuous group G(T'CP) and the connection of the
latter with the Lorentz group. This problem we have
studied elsewhere for the 4-dimensional Lorentz
group®: We have shown there that if D is a discrete
symmetry operator, {C*, C,, -+, Cy} a “‘complete
commuting set” of operators, and if M (< N) of these
change sign under D, then D is continuously con-
nected to the identity in the group G(D,4) =
SU, ® SU,® -+ - ® SU, (M times). Actually, what
was shown is that for such a D there are 2M possible
“generators’” Q such that D = exp (i#Q) for any one
of these Q’s; and the 2M s together with the M
commuting C’s which change sign under D constitute
a Lie algebra isomorphic to the Lie algebra of SU, ®
SU, ® -+ ® SU, (M times). We explicitly demon-
strated this for the operators of parity, time reversal,
charge conjugation, and TCP. In particular for the
TCP operation in four dimensions, we find that only
two of the complete commuting set of operators
change sign so that TCP is continuously connected
with respect to the group G(TCP, 4) ~ 0, ~ SU, ®
SU,. Now if we take the complex Lorentz group,
its maximal compact subgroup M(4, c) is just Oy; so,
in the 4-dimensional complex Lorentz group, TCP is
continuously connected to the identity in its maximal
compact subgroup, i.e., M(4, ¢) ~ G(TCP, 4).

Now suppose that space-time is a 2n-dimensional
Minkowski space. Then,in the connected component
of the complex Lorentz group L,(2n,c), the two
disjoint subgroups L!(2n, R) and L!(2n, R) are con-
nected continuously via the TCP operation. Since
0O,,, n # 2, is not semisimple, from what we have
said above about the connectivity properties of a
discrete symmetry operation, it follows that the real
group G(TCP;2n), in which TCP is connected con-
tinuously to the identity, is only a subgroup of the
maximal compact subgroup M(2n,¢) of L. (2n, c).
These two subgroups G(TCP:2n) and M(2n, c)

coincide only if n =2, ie., the dimensionality of
the space-time is four.

This may also be seen by the following construction.
Let the space be of 2n dimensions, isotropic and homo-
geneous. Then the rank of the symmetry group is .
The sum of the squares of translation generators is a
Casimir invariant. One can find n — 1 generators
which can be simultaneously diagonalized with it and
which together with a “charge operator” form a set
of n-commuting operators which change sign under
TCP; this essentially defines the TCP operation. It
then follows from the connectivity property of a dis-
crete symmetry operation that 7CP is continuously
connected to the identity with respect to the group
(or one locally isomorphic to it) G(TCP;2n) ~
03 ® 03 ® - - - ® Oy, n-fold, which has 3n generators.
On the other hand, the maximal compact subgroup
M@2n,c) of L,(2n,c) has n(2n — 1) generators.
Therefore, in order for TCP to be continuously
connected to the identity in L_(2n, ¢), we must have
3n < 2n? — n, or 2n < n®. Equality obtains only for
n = 2, i.e., the dimensionality of space~time is four.
Thus from the point of view of economy of dimensions
together with the TCP, the dimensionality of space-
time should be just four.*

In the remaining part of this paper we shall sum-
marize other plausibility arguments in support of
the dimensionality of space-time as four.

1. STRENGTH OF THE FIELD EQUATIONS

Given a set of fields, and the field equations (as
partial differential equations) they satisfy, the fields
are determined to an extent, but (in general) not
completely. Thus, there remain certain free data. To
characterize the free data, Einstein® introduced the
concept of the “coefficient of freedom” as follows.
If we expand the fields in a Taylor series in the
neighborhood of a point P, then the totality of its
coefficients describe the field functions completely.
Let N, denote the number of nth-order coefficients,
and let M, be the number of conditions that the
field equations or other constraints impose on the
nth-order coefficients. The number of nth-order
coefficients remaining free is

z= Nn - Mn = Nn(l - Mm/Nn)'
Let us expand:
L~ MJIN, =14 z/n+ z,/n>+ .

Then z, is defined as the “coefficient of freedom.”
Einstein remarked on the fact that, for empty space,
Maxwell equations and Einstein equations of general
relativity z,havethe same value 12 for the space-time
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dimensionality of four, whereas the Klein-Gordon
zero-mass scalar field leads to a different value. Penny’
has shown that, of the two zero-mass neutrino equa-
tions of Dirac and Weyl, only the latter gives z, = 12
for the space-time dimensionality of four. Hence, if we
make a virtue out of this to demand that in the ab-
sence of any other criteria the coefficient of freedom
should have the same numerical value for various
field equations describing physical phenomena, we are
led to conclude that the space-time dimensionality
is four.

2. VARIATIONAL PRINCIPLE AND UNIQUE-
NESS OF THE EINSTEIN EQUATIONS

Suppose we assume that the gravitational phe-
nomena are to be described in terms of the metrical
properties of space-time. It is then natural to assume
that the trajectory of a test particle is given by the
geodesic equation; the Christoffel symbols therefore
play the role of the field components of intensity.
Under coordinate transformations these transform
linearly but not homogeneously. As a result, by a mere
coordinate transformation they can be made to vanish
at a point. It is thus desirable to have field equations
that are tensor equations. Since the Christoffel sym-
bols are of the first order in g,, (the metric tensor),
the Lagrangian should at most be of the second order

ing,,:
L = L(guw guv.aa guv,aﬁ)'

The resulting Euler-Lagrange equations will be of the
fourth order in general.® But for the lower dimen-
sionalities the following holds®:

(a) n = 4; there is one third-order Euler-Lagrange
equation;

(b) n =2, 3; there are no third-order Euler-
Lagrange equations;

(c) n=2, 3, 4; the only second-order Euler-
Lagrange equation are the Einstein equations.

Thus if we demand that the field equations be of
second order, then n < 4, If n < 3, then the connec-
tion between curvature and gravitation envisaged in
Einstein’s theory breaks down. This may be seen as
foliows. For n = 2, the Riemann curvature tensor
has just one independent component, and the space is
both conformally and projectively flat. If we con-
sider n = 3, the Riemann curvature tensor has six
independent components. In both cases, the con-
tracted curvature tensor has the same number of
components as the Riemann tensor. Hence the
vanishing of the contracted curvature tensor is
sufficient to insure that the space is flat. In case of

the Einstein field equations, outside a material body
we get
contracted Riemann tensor = 0.

Forn < 3, this implies, from what we have said above,
that the space (outside the material point) is flat and
there is no gravitational field outside the material
point. If we therefore accept Einstein’s viewpoint on
gravitation (connection between curvature and gravi-
tation), the dimensionality of space-time should be at
least four. We note parenthetically that if one con-
siders the inverse-square law of force for electrostatic
and gravito-static interactions as something basic, then
the dimensionality of space has to be three (and
of space-time four) if the field equations for the po-
tentials are of the second order. For instance, if one
considers the Schwarzschild type metric in a (n + 1)-
dimensional space-time (ay = sin 0,_;)

dS* = fdt* — dr¥/f — r*[dO} + of d6? + (xy00)°
X dog+ - 4 (oo, 5) d62 ]

together with the Einstein field equations, one finds
that
f— 1~ r—(n—?)'

It is well known that attractive potentials ¢(r) ~ r—",
for m > 2, do not give rise to well-behaved bound
states. Such potentials are to be rejected if one requires
that there exist bound states of matter.

3. EQUIVALENCE OF A GEODESIC IN FORCE-
FREE CURVED SPACE AND FORCE
EQUATION IN FLAT SPACE-TIME

There is an interesting connection between the
concept of force and the concept of time. If one con-
siders a homogeneous, isotropic space, then the sum
of the squares of the translation generators is an
invariant. In the presence of external “forces” this
is no longer the case. For certain types of forces,
however, the sum of the squares of the translation
generators plus a certain “potential” function describes
the development of the system in “time.”” The “poten-
tial” function then describes the “force” completely.
An alternate way of looking at it is as follows.

Consider the motion of a “test particle” in a three-
dimensional affinely connected space; one can repre-
sent it by the equation of a geodesic:

2yt j k
X, A, o)
ds? ds ds

If one further assumes the validity of the “Pythag-
orean theorem’ so that dS is determined by

ds? = g,; dX*dX’, V)
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then T are completely determined in terms of the
g:;- On the other hand, in mechanics one is used to
considering the equations of motion in a (3 + 1)-
dimensional space-time together with the concept
of force:

a*xt
dr?

o dX7dXE -g‘f—————-aqs(Xl’X"” Xy)

- 3
o4t de X’ ®

where £ is the metric tensor of a flat 3-dimensional
space and ¢ is the time parameter. More generally,
one can consider the equations of motion in the form

a*xt
dr®

~. dX7dx*®
T
ot dt

4

where T is a symmetric tensor. It is amusing to
note that the system (3) can always be replaced by
the system (1) and (2) by choosing for example®

2 o o

e, =10 + -
7 FTaxtE Gxiaxt

(5)
irrespective of what field equations ¢ may satisfy. On
the other hand, (4) cannot in general be replaced
by the system (1) and (2) unless the dimensionality
of space is three or less. The reason is that for three
dimensions 7% has six independent components
which may be determined in terms of the six com-
ponents of the Riemann tensor. This may be con-
sidered as an additional argument in favor of the
dimensionality of space-time as four: viz., an arbi-
trary geodesic in a curved space assigned with a
positive-definite metric can be looked upon as the
motion of a particle under “force” in flat space-
time and vice versa, provided that the dimensionality
of space is three.
SUMMARY

It is shown that, for the validity of TCP theorem
as usually understood, the dimensionality of space-
time should be even. The following plausibility
arguments are presented in favor of the dimensionality
as four.

(1) The smallest subgroup of L, (2n, ¢) in which
TCP is continuously connected to the identity is a
subgroup of O,,,the maximal compact subgroup of
L.(2n, c) provided 2n > 4. Hence, the requirement
of economy of dimensions together with TCP lead to
the space-time dimensionality as four.

(2) If one requires that the strength of the field
equations describing natural phenomena (of zero

mass fields) should be the same, then one finds that
for Maxwell (electromagnetic), Einstein (gravita-
tional), and Wey!l (neutrino) equations this is so only
if the dimensionality is four.

(3) If the connection between curvature and
gravitation envisaged by Einstein holds and the field
equations are of the second order and derivable from
a variational principle, then the dimensionality is four.

(4) If the existence of bound states is an essential
requirement and the field equations are of the second
order, then the dimensionality of space-time is
necessarily four.

(5) If the trajectory of a test particle in space is
considered as a geodesic in curved space, assigned
with a positive definite metric, then this description
is equivalent to a particle under “force” (derivable
from a symmetric stress tensor) in flat space-time
provided the dimensionality of space is three.

Note: Since this paper was completed, there has
appeared a paper by I. M. Freeman [Am. J. Phys.
37, 1222 (1969)] on the dimensionality of space. This
paper is an adaptation of an earlier work of W. Biichel
[Physik. Bl. 19, 547 (1963)], and gives reference to
an important paper by F. R. Tangherlini [Nuovo
Cimento 27, 636 (1963)], which gives several reasons
for the dimensionality of space as three.
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Beginning with an intuitive consideration of sequences of measurements, we define a time-ordered
event space representing the collection of alf imaginable outcomes for measurement sequences. We then
postulate the generalized distributive relation on the event space and examine the class of measurements
for which this relation can be experimentally validated. The generalized distributive relation is shown
to lead to a c-additive conditional probability on the event space and to a predictive and retrodictive
formalism for stochastic processes. We then show that this formalism has a predictive and a retrodictive
representation in a separable Hilbert space J¢, which has no counterpart in unitary quantum dynamics.

INTRODUCTION

A recent series of papers'—® has developed the idea
that much of the formal mathematical structure of
physical theory can be deduced directly from the
statistical nature of experimental data. The present
paper presents that portion of these studies which
bears directly on the evolution of irreversible physical
processes.

We begin the study of the evolution of a system by
insisting that if we are to say we have observed the
dynamic behavior of the system, then we must
monitor the system by a sequence of time-documented
measurements {My — M, —> My —-++—> M}

With each of the measurements in the sequence, we
associate in our mind a collection of possible out-
comes, the collection being determined, of course, by
the properties of the measuring apparatus. We may
also associate a collection of possible outcomes with
the entire measurement sequence.

We assume that all experimental data is statistical
in nature, i.e., each outcome in the collection of
possible outcomes is a random event. This assumption
leads us to consider probability theory as a mathe-
matical model for the kinematics of a system.

Since our imagination, at least for physical-
experimental situations, seems to be conditioned by
conventional logic, we will assume that a c-algebra
describes - the collection of imaginable outcomes
(event space) of a measurement and that the frequency
of outcomes can be described by a c-additive measure
of unit norm whose domain is the o-algebra.

This approach does not differ from conventional
approaches except, as we will show, in the definition
of the o-algebra of possible outcomes for measure-
ment sequence and the conditional probability
defined on this c-algebra.

We will show that an equivalence relation must be
defined on the o-algebra for the measurement
sequences in order to obtain the predictive and

retrodictive random walk formulation for stochastic
processes. This equivalence relation, the generalized
distributive relation, is empirical in nature and is not
deducible from the logical structure of the mathe-
matics describing the measurement sequence.

We will then show that the predictive and retro-
dictive random walk formulations for the dynamics
of a physical system have representations in a
separable Hilbert space J, which differ considerably
from the conventional quantum representation. It
appears that the dynamical laws of conventional
quantum theory are not the most general representa-
tion of the random walk formulation in 3.

THE MEASUREMENT

For the sake of clarity and brevity in the following
discussions, we will begin by defining the measurement
process.

We assume that an experimental situation may be
completely described by a countable, functionally
independent set of real-valued functions (f;,fs,
fa, ), which may be arbitrarily partitioned into two
functionally independent sets; one set, a K-tuple
(fi>f2, "+, f}) describing the results of K simul-
taneous measurements, and one set (fy, /5, /5, ")
describing the environment conditioning the measure-
ment. (This simply states that we must be satisfied to
determine a finite number of system properties.)

We suppose that a measurement is always limited

to some finite resolution, and thus each of 1, 5, "+,
f&% has a countable range R;, Ry, -+, R, , respec-
tively. Since each of /1, /%, -+ ,f% has a countable

range, there exists a countable collection

{(pls P2y pK)}meRfI.MEsz.“-.Plx'eRfK

of K-tuples of real numbers (denoted {p,}ic1.2.3....)
which contains all possible K-tuples of real numbers

in the range of (f1, /%, " ,fk)
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STOCHASTIC PROCESSES

Such assumptions lead us to make the following
definitions:

A measurement of a system is an operation per-
formed on a system which assigns a configuration
Pr € {Prr=1.2.3,... to the system.

The spectrum of a measurement is the collection of
all possible configurations {;};—1.2.3..... For example,
if we are interested in the pressure and volume of a
system, then a configuration assigned to the system
is a 2-tuple of real numbers (P;, V;) in the range of
the functions P and V, respectively.

We may now define the event space as the collection
of all imaginable outcomes for a measurement. Let
C; denote the spectrum of a measurement process M, .
The event space {E,(C;)} is the o-algebra’ of subsets
of C,. The motivations for such a choice for the
event space are discussed in several texts®®; argu-
ments against such a choice have been discussed by
Jauch.'®* We will assume the o-algebra to be a valid
representation since as we will see there seem to be
many physical situations for which the c-algebra is
appropriate and yields results not obtainable by
conventional quantum theory.

Here we will refer to the members of {E;(C,)} as
events and define the probability for an event as a
o-additive measure P of unit norm on {£,(C;)}. Such
a function has the following properties:

(i) If E € {E(C)}, 0 < P(E) < 1;
(i) P(¢) = 0; ¢ is the null event corresponding to
the empty set in {£;(C,)};
(i) P(Cy) = 1; C; = Uy -1 (5, (set union is inter-
preted as logical or);
(iv) if {E;};_1.0.3... is a disjoint sequence of sets in
{E;(C))}, then

0 0
P<UE,~) = > P(E)).
j=1
There is a much wider agreement on the properties
of P than the event space because of obvious physical
interpretations. Axioms (i) and (ii) follow from the
operational definition of probability. Axiom (iii)
simply states that some value in the spectrum must be
obtained as a result of M;, and axiom (iv) is the
mathematical statement of the familiar mutually
exclusive rule in probability theory.
With this brief introduction we may now consider
sequences of measurement operations.

SEQUENCES OF MEASUREMENTS

We wish now to consider the time-documented
sequence of measurements {My,— M; — My, — -+ —
M ;}. By time documented we mean M, occurs at ¢,
and, in case i < j, then t; < t;. Since each M, has
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an associated event space {E;(C;)}, the collection of
all imaginable outcomes for the ordered sequence
{M};—y 1, is a physically meaningful notion; thus
we proceed to define the event space {E(C)} for
{M};_1.1,- Let C denote the Cartesian product space
for the sequence of g-algebras {{E,(Cy)} — {E{(Cy)} —
{Eo(Cy)} =+ - > {EL(Cp)}}, ey

C = {E(Co)y @ {EL(C)} @+ @ {EL(Cp). (1)

{E(C)} is the event space for {M;};_, ;, means that E
is an event in {£(C)} only in case E is a subset of C.

That {E(C)} contains the imaginable paths of
outcomes for the measurement sequence can be seen
from recognizing that {E(C)} contains the collection
{Sn} of simple paths {(py, — Pr, — Pr,)} (Which
are read as “ﬁk.o occurred, then j, occurred, then, - - -,

then p, occurred”), the compou;ld paths such as

lo 1
{(Uﬁkoﬁuﬁkl_).
1

ko=1 k1=

[#7

R U ﬁkl)},
k=1

and the unions and intersections of the compound

paths, for example,

1
(ﬁko —Up,— 13“)
k=1
lr
Y (ﬁko"’ﬁkl'_’ o —>U ﬁkz)
k=1
Notice that, in contrast to the usual route in proba-
bility theory,® we have not defined {E(C)} to be the
Cartesian product space of the o-algebras {E(Cy)} ®
{EL(CY} ® + -+ ® {EL(CL)}. Such a choice is not the
most general one since it requires that set operations
in {E(C)} be defined in terms of set operations in
{E;(C))}. For our definition of {E(C)} we see that C
does not form a ¢-algebra since it contains no unions
of members of C. However, by choosing an equiva-
lence relation between members of C and the compli-
ment of C in {E£(C)}, one can “induce” a o-algebra on
C. As we shall see in the next section, such a choice is
empirical and seems necessary in order to produce the
stochastic process.

PROBABILITY ON {E(C)}

We now turn our attention to probability functions
on {E(C)} and, in particular, conditional probabilities.
We will assume in the following discussions that the
environment for the sequence {M;},_, 5 is fixed and
described by §. We will tacitly require that all proba-
bility functions on {E(C)} be conditioned by 4.

The unit norm condition for P on {E;(C,)} is given
by

P(C) =1, @
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FiG. 1. Electron gun apparatus.

which was interpreted as the probability for some
event to occur during M;. In view of this, it would
seem reasonable that, for the sequence of measure-

ments,
P(Co—>Cy—--—Cp) =1 (3)

and, for the simple paths {S,},_; » ... in {E(C)},
P(U S,,) =1,
n=1

which is interpreted as some simple path must occur.
In order for (3) and (4) to be true, we must postulate
the following relation:

If

(4)

Eoe {Ef(Cp)}, E €{E(C)}, -,
both
E; & E;’ € {E,(C,)}, RN EL € {EL(CL)},
then
(Ey—~E,—~

=(Ey—>E; —--

— Ep)

"—Ep)

—Ep). (9
We will also require the class of measurements that

we are investigating to obey

evr >E' VE! — .-
2 1
. ,‘1{,..

U(Ey—~E,—-+—E—>-""

P((ﬁko”*ﬁkl_"""ﬁk;_’"'—’ﬁu)
N (Pry=> By —> Dy =" = Pr))
_ [0, ki##k;
T AP(Buy > By~ B B
ki =k;, (6)

which simply states that only one configuration may
be obtained as the result of a measurement. State-
ments (4), (5), and (6) must be a posteriori in nature,
not derivable from any a priori consideration. To
clarify this point, consider the following measurement
situation.

The schematic in Fig. 1 describes two electron guns
G, and G, firing at a fixed target M. These electrons
are scattered from M and detected at D, or D,. The
entire apparatus is placed in a cloud chamber so that
the track of each electron can be monitored if desired.
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Such a device will serve to examine the generalized
o-algebra {E(C)} and Eqgs. (5) and (6).

Let M, denote detection of the firing of the guns,
M, denote detection of scattering from the target,
and M, denote detection at D, or D,. We may now
build {E(C)} for the sequence {M,— M, — M,}.
The o-algebras {E,(C,)}, {E,(C))}, and {E,(C,)} are
given by
{E(Co)} = {(GY), (Ga), (G1 V Gy), (G, N Gy), o},
{E(C)} = {M, o}, ™)
{E2(Co)} = {(Dy), (Dy), (D1 Y Dy), (D; N Dy), @}

C as defined earlier is given by the Cartesian
product space {Ey(Cy)} ® {E1(Cy)} ® {Ex(Cy)}, and
{E(C)}, the event space for {My,—> M, — M,}, is the
o-algebra of subsets of C.

If we form {E(C)} by the prescription given above,
we see that {E(C)} contains events such as (G; —
M — D)), (G,— M — D,), (Gy—~ M- D;), and
(Gy — M — D), the union of these [(G, -~ M — D,) U
(Gi—>M— D) U (Gy—>M— D) U (G~ M~
Dy)], and (G; U G,— M — D; U D). It is quite
natural to interpret each of the events in the collection
{(G:— M — D,)} as the event for a certain simple
path to be observed in the cloud chamber. The union
of these simple paths would, of course, be interpreted
as the event for one or another of the simple paths
to occur. However, the event (G, YV G,— M —
D, U D,) would appear to have no simple interpre-
tation as an event independent of the events for
simple paths. [The event (G, U Gy, —~ M — D, U D,)
seems a likely candidate for a “superposition” event
defined by Jauch!® if the o-algebraic structure of
{E(C)} is modified. This investigation will constitute
another paper.]

We do see, however, that Eqgs. (3) and (4) can be
satisfied for {E£(C)} only in case Eq. (5) is valid on
{E(C)}. Equation (5) defines the event (G, U G, —
M — D, U D,) in terms of the simple paths in
{E(C)}, i.e., by Eq. (5)

(G, VG,—~M— D, U D,
= (G,—>M— D, UD,) U (Gy—>M— D, UD,)
= (Gi—>M — D)) U (G;—M— D,
V(Gy—> M —> D, U D,)
= (G,—>M— D)) U (G,—> M— D))
U(G2—>M—+D1)U(GZ—>M—>D2), (8)

and therefore the requirement for {E(C)} that P(C) is
unity is consistent with Eqs. (3) and (4).

We will call Eq. (5) the generalized distributive
relation of the set operation @. with respect to the
ordering operation —. We see that this relation is
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a posteriori in nature, i.e., it is not required by the
structure of {E(C)}. Only when we require Eq. (3) or
Eq. (4) to be valid must we require the generalized
distributive relation. The validity of Eq. (4) can be
tested only if each of the simple paths are observable;
thus the generalized distributive relation is ultimately
a posteriori in nature.

It should be evident that Eq. (5) “induces” a o-
algebra on C and thus reduces {£(C)} to the conven-
tional o-algebra of simple paths. [If Eqgs. (3) and (4)
are to be consistent with the requirement P(C) =1,
then the generalized distributive relation must be valid
for both union and intersection with respect to
ordering.] We will see, however, that the generalized
notation obtained from generalizing {E(C)} leads to
some new notions in stochastic processes.

Let us return to the experiment of Fig. 1, assuming
that the generalized distributive relation is valid for
this experiment. We see, in general, that the proba-
bility for G; N G, and D; N D, is nonzero. However,
if we suppose that G, and G, never fire simultaneously
and that D; and D, never detect simultaneously, then
Eq. (6) is satisfied; thus we see that Eq. (6) is a
requirement motivated by a posteriori knowledge.

From Eqgs. (6) and (8) and the additive property of
P, we see that

P(G, VG,—~M— D, U D,)
= P(G, > M — D,) + P(G;,—> M — Dy)

+ P(Go— M — D) + P(Gy~ M — Dy), 9)
from which we conclude that
PG, VG, —M— D))
= P(G,—> M — Dj) + P(G,—~> M — Dj); (10)

thus we are provided with the definition
P(D) 2 P(Cy—C,— D) = 3 PG~ C, D))
i=1,
(11)

for the unconditional probability to detect a particle

P(EL| E%) & P(Cy— C, — -

. !
—E;—>Cin—

—>CLIC0—>C1—>-~
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at D;. This definition may be generalized to an L-
term measurement sequence, i.., for the L-term
measurement sequence {My,— M, —> My, —- -
My}, the unconditional probability for a result 7,
during M;, 0 < i < L, is given by l

—>

P(p"i)ép(c"_’Cl_" o P> Cipy > > Cp)

o0 e}
= P(kulﬁ’” - U ﬁk; —> —’ﬁk,-
0=

k1=1
- Uﬁh). (12)
kr=1

Thus, using the generalized distributive relation, the
disjointness of the simple paths in {E(C)}, and the o-
additivity of P, we see that Eq. (12) may be written
in the more familiar form

0
- U Pro ="
ki+1=1

PHy=2% Z- 2 % oo
ko=1 k1=1 ki-1=1 ki+1=1
kzlP(ﬁko —ﬁ)p‘kl —r —)ﬁl.‘i - —)ﬁkl,)’
=
(13)

that is, the unconditional probability for ﬁki 1s the sum
of the probabilities of all simple paths containing p,, .

With a suitable definition of conditional probability,
Eq. (12) provides the general mathematical structure
for a stochastic process. Conditional probability on
{£(C)} may be defined by analogy with the traditional
definition. Conventionally, the probability for “E} is
observed if EF is observed” is given by

Po(E!| E%) = P(E! N E%)/P(EY). (14)

For the conventional event space, such a definition
suffers from causal ambiguities; however, for the
time-ordered event space such ambiguities disappear.

In addition to the simultaneous events of Eq. (14),
we wish to consider the conditional probability for
the time-separated events E; and EF, i 3 j. By analogy
with the conventional definition (14), we define

'_’E?_’Ciﬂ_""_’cl,)

_P((C0—+C1->-~-—>E§—>Cj+l—>~‘~—>CL)ﬁ(C0—>C1—>'-'—>E§-—>Ci+1—>"--—+CL)).

P(Cy— Cy—> - -

'—>Ei“’ci+1_’

"> Cp)
(15)

we see that this is well defined, independent of the magnitude of i with respect to j. Let us examine this
definition for the case where / < j and the case where i = j.

When i < j, Eq. (15) becomes

P((Co—>C1—>_.)C1__,__>E§—>CH_1_,_)CL)
P(EllEk)_ m(C0—>C1—>-..—>E’{—>Ci+l—_>---_._)Cj_,...__)CL))'
i i P(CO-)C1——>—>E1L-—~)C1+1_>_,C’__)__>CL) >

(16)
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thus P(E]| Ef); i < j has the obvious interpretation “the conditional probability for the event E} to occur
at time 1, if EF is known to have occurred at an earlier time #,.”
Now P(Ef | E}) is also well defined by Eq. (15). Let us examine the nature of this conditional probability.

Equation (15) yields
P(E}| E})

_P((COACIH"'AE,;—)CH&—_)“‘—ycjv}”.'_*CL)n(C0—>C1_>'""’EJI'—_)CH-I_)”.—_)CL.))

P(Cy— Cy—+ -

which, in view of the nature of the sequenced event
space, can only be interpreted as ‘‘the conditional
probability for the event E¥ to occur at f; if E] is
known to have occurred at a later time 7,.”

In case i = j, we see from Eqgs. (16) and (17) that
our definition of Eq. (15) is the analog of the con-
ventional definition given by Eq. (14).

It is our claim, and we discuss this more fully in the
sections to follow, that the sequenced formalism
clearly distinguishes and defines both “types™ of
conditional probabilities as given in Eqs. (16) and (17).
We will demonstrate that the conditional probability
of Eq. (17) can be the “inverse” or “time-reversed”
form of the conditional probability of Eq. (16) only
in case the system follows a deterministic path
through the measurement sequence. We also will see
that P(E¥ | E}), i < J, is definable only because of the
a posteriori nature of the data from a measurement

sequence.

P(f) = 2 P(Co—>Ci— -
ki

> Ci—>

> P> Cipp—>

—~Ej—>Ciy—> = Cyp)

(17

We will postpone this discussion until we have
more fully developed the stochastic equations de-
scribing the measurement sequence.

THE RANDOM WALK

Now that we have developed the definitions for
conditional probability and unconditional proba-
bility, we are able to consider the measurement
sequence as a generalized random walk problem. We
will, in this section, develop the random walk equa-
tion which determines the probability for the state-
ment, “‘the simple event f, is the outcome of M,,
regardless of the outcomes of the rest of the measure-
ments in the sequence,” in terms of the conditional
probabilities of p, with respect to the outcomes of
other measurements in the sequence.

We accomplish this by beginning with the definition
in Eq. (12) of the unconditional probability. From
this we may write

(18)

—> P, Cipa = —Cp), J> I

Since the conditional probability is defined for each member of {£(C)}, we may write, from Eq. (15),

P(Co—>Ci— -

“’Iskj”’cﬁl“""_*cL)m(co_*c1“""'—*ﬁkf_’ci+»1"’"'_’CL))

P(hiy | Br) =

P(Coﬁcl"’"“‘*ﬁki""ciﬂ—""

—»CL)

(19)

Using the generalized distributive relation, we may reduce the numerator of Eq. (19) so that Eq. (19)

becomes

_P(Co“'*cl_’"'“’ﬁk,:_’ciﬂ’“*'""’ﬁk;"cﬂl”"""‘_’CL)

(20)

P(By, | Br) =

P(Cy— Cy —* -

'_>Pk¢~)ci+1_>.'.

- Cyp)

Since the numerator of Eq. (20) is exactly the term inside the sum of Eq. (18), we may employ Eq. (20) to

write Eq. (18) as

P(ﬁk,-) = Z P(ﬁk; l ﬁki)P(Co — Cy—-
i

= Cp). (21)

> P> Copn—

/

Before we “expose” this as the random walk equation, let us consider the unconditional probability for 7, .

From Eq. (12), we may write

P(ﬁki)=zp(co“’cl‘+’"—’ﬁkg“’ciﬂ_""
ki

—Cp), J>1 (22)

= Py > Cjn—>
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and, as we saw in the development of Eq. (20), we may write from Eq. (15)

P(Co—C,— > pu—>" " > py—>Cipn— " —>Cr) .
P(,, \ ﬁk,») - (Co 1 i3 _ k 3+1 L P> (23)
P(Co—>Cr—> = Py > Ciy = = Cp)
which allows us to write Eq. (22) as We also see that Eq. (30) is not at all conventional
‘ i i since it implies that if we know the probability set
P(p,) = ;P (B, | Br)P(Co— C > - =y, {P(p)} at 1, and the set of retrodictive transition
i L babilities {7y}, then we may calculate the
RPN . (24) Prodavl gt
= Cin—~ Cr), J>1 (24 probability set {P(p;)} even when 1, < t;. Such a

In the simplified notation provided by the definition
of unconditional probability, Eq. (21) may be written
as

P(ﬁk,) = z P(,p"k'j ‘ ﬁki)P(ﬁL';)’ .] > i, (25)
ki
and Eq. (24) may be written
P(p.) =2 P(by,| Be)P(By), >0, (26)
kj

which we will name the predictive random alk
equation and the retrodictive random walk equation,
respectively. This is an obvious choice of terminology
since Eq. (25) calculates probability distributions for
events occurring at f; in terms of the probability
distributions for events occurring at an earlier time t;
and since Eq. (26) calculates probability distributions
for events occurring at 7, in terms of the probability
distributions for events occurring at a later time 7.

We may go a step further in adapting our notation
to the standard notation by defining the predictive
transition probability

A A P
Tkjki = P(pkflpkz)
=P(I3k;lco"cl_’"'—*ﬁk,-
'—’Ci_" .

—Cp) (27)

~Cip
and the retrodictive transition probability
r A sl A
Tkik;' = P(plci pk]-)
=P(ﬁkilco"’cl_’"'""ci

> > Gy >

—Cr), (28)

so that the predictive random walk equation becomes
P(pe) = 72 Ty 3. P(Pr) (29)

and the retrodictive random walk equation becomes
P(py,) = 72 T, P(Pr)- (30)

We see from the preceding analysis that Eq. (29)
is a generalized form of the conventional Markoff
random walk equation. It is generalized in the sense
that T}, is not Markoffian.

result is completely consistent with the a posteriori
nature of data. We will discuss this property of data
in the conclusion section of this paper.

PROPERTIES OF THE STOCHASTIC PROCESS

In this section we will examine the temporal
behavior of the stochastic process in terms of pre-
diction and retrodiction. This examination will clarify
the relationship between the predictive dynamics and
the retrodictive dynamics and will provide a founda-
tion for our examination of the JC representation of
stochastic processes.

Each measurement pair M;, M;, i <j, in the
measurement sequence {My— M, —---— M} de-
fines a collection of predictive transition probabilities
{Ty,}» a collection of retrodictive transition proba-
bilities {7y}, and a collection of simultaneous con-
ditional probabilities {Ty.}.

T(j,i) is the predictive transition matrix for the
measurement pair M;, M;, i < j, means that T(j, i)
is a matrix such that T, is the k;th-row and the
k;th-column element of T(j, 7).

T'(i, j) is the retrodictive transition matrix for the
measurement pair M;, M;, i < j, means that T'(i, )
is a matrix such that 7y, is the k;th-row and the kth-
column element of T'(i, j).

T(i, i) is the simultaneous conditional probability
matrix for the measurement M; means that T(i, i) is
a matrix such that 7}, is the k;th-row and the k;th-
column element of T(i, i).

We see then that an L-term measurement sequence
defines $L(L + 1) measurement pairs M, M;, i < j,
and thus defines $L(L 4+ 1) retrodictive transition
matrices, $L(L + 1) predictive transition matrices,
and L simultaneous conditional probability matrices.

Let {T(j,i)} denote the collection of predictive
transition matrices, {T'(/, j)} denote the collection of
retrodictive transition matrices, and {T(i, i)} denote
the collection of simuitaneous conditional probability
matrices. Let {G(§, i)} denote the collection of members
of {T(j, N}, {T'(i, N}, and {TG, i)}
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We will now investigate the conditions, if any, for
the collections {T(j, 1)}, {T'(i, j)}, and {G(j,i)} to
form either groups or semigroups with respect to
matrix multiplication.

First, we note that Eq. (6) requires that the collec-
tion {T(i, i)} be the collection of unit matrices {I,}. In
general, each member of {I;} is of a different dimen-
sion, depending on the spectrum of M. In this investi-
gation, we will assume that each spectrum is countably
infinite, and thus each member of {I;} will be of the
same dimension.

It is not difficult to see that matrix multiplication
between certain members of {T(j, i)} produces a
transition matrix in {T(j, i)}. To show this, we simply
use Eq. (29) to write the following equation set:

P(ﬁlﬂ) = kz T;clkop(pko)’
0

P(ﬁkg) = kz T;cahp(ﬁkl) = kz T;cgkop(ﬁko)
1 0
(31)

P(ﬁkL) = E TkLk],—lp(ﬁkl,—l) = z T;r],k‘L—zP(ﬁkl,—z)

kr-1 kr-2

== kz Ty P(Pr) = kE T ko P(Pro)-
1 U]

Substituting the first equation of the set (31) into the
second equation in the set, we obtain

P(ﬁkz) = z P(ﬁko) z Tkzleklko = 2 P(ﬁko)Tkzko’ (32)
ko

ko k1

which implies by comparison the Chapman-Kolmog-
orov relationl!

Tkzko = Z Tkzlehko'
ky

This procedure may be repeated for the entire set (31)
to obtain
Tkzko = z 2 T Z TkLkL—lTkL—1kL—z o

kr-1kL—2 k1

Since T, is the kzth row and k,th column of T(L, 0),
we see that Eq. (34) provides a multiplication theorem
for transition matrices,

T(L,0) =T({L,L—DT(L—1,L—2)---T(,0).
(35)

From the retrodictive equation (30), we may write an

equation set similar to the equation set (31) and derive

the multiplication theorem for the retrodictive transi-
tion matrices

T0,L)=T0,1DT1,2)-- - T(L — 1, L).

* Do (34)

(36)

33)
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In addition, Eqs. (29) and (30) can be combined for
various integers i and j so that multiplication is defined
between members of {T(j,i)} and {T'(i, j)}. For
example, consider the integers ¢, s, and ¢ such that
0<g<s<t< L Equations (29) and (30) then
define the products
T’(q, S)T'(Sa t) = T’(q’ t),
T'(q,0)T(t,5) =T(q,s),
T, 9T(g, 1) =T'(s, 1),
T'(s, 0Tt q) = T(s, 9),
T(t’ q)T,(q, S) = T(t9 S)-
However, we also obtain from this process
P(p,) = Z P(py,) E Teee Tevrs
ks’ ke’

= E Mo P (ﬁk,'),

fes”

P(ﬁkg) = z P(ﬁkg') z Tlcﬂc,’TI:,’kz‘
ke’ ks’

= z ngkt’P(ﬁkt’)'
k¢

@37

(38)

Equations (38) define the matrix products

M(s, s) = T'(s, OT(2, 5),

M(t, 1) = T(¢, )T (s, t). 39

The immediate inclination is to identify the collection
{M(i, i)}: 0.1, as the collection {T(i, i)} of simultaneous
conditional probability matrices. However, such an
identification would require that

M(s,s) = |, = T'(s, )T(2, 5),

M(t,t) = I, = T(t, 5)T'(s, 1), (40)

and, if the dimension of I, is the dimension of |;, then
Eqs. (40) imply that

T'(s,t) = [T(, 9] 41

Wu'? has shown, however, that since each member of
T(z,s) is positive, then its inverse transition matrix
[T(z, )] must have at least one regative member,
unless, of course, T(z,s) has only one nonzero
member. Since T'(s, ¢) is itself a transition matrix,
Eq. (41) and thus Eqgs. (40) can be satisfied only in
case T(#,s) has only one nonzero member. [In this
case T(t,s) would describe a deterministic process.]
Thus we see that, in general, M(s, s) cannot be identi-
fied as the matrix T(s, s) of simultaneous conditional
probabilities.

With multiplication defined in {T(j, i)} and {T'(i, )},
we may proceed to examine these collections as groups
or semigroups.
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Since {T(j, i)} can form a group only in case each
member T(r,q) € {T(j, i)} has an inverse [T(r,q)] ' €
{T(j, i)}, we see from the preceding arguments that
neither {T(j, i)} nor {T'(i, j)} can form a group.

We also see that the collection {G(}, i)} cannot form
a semigroup since the product M given by Egs. (40) is
not a member of {G(j,i)} unless, for each positive
integer i such that i < L,

M@, D) =T3G, D=1, (42)

which, as we argued, is possible only for a determin-
istic system.

Let us now examine the conditions for {T(j, i)}
and {T'(i, j)} to form semigroups. Suppose {T(j, i)}
forms a semigroup. In this case, closed associative
multiplication must be defined between each pair in
{T(j, i)}. We see from Eq. (35) that left multiplication
of T(r,s) by T(q,r) yields T(g, s); thus the product
T(q, r)T(r,s) is a member of {T(j, i)} and the multi-
plication is closed. Since this multiplication is matrix
multiplication, it is also associative.

We see, however, that multiplication of the two
matrices T(p, q)T(r, s) produces a transition matrix in
{T(j, )} only in caseq = r or p = s. This fact motivates
us to define the following notion: Two transition
matrices T(p,q) and T(r,s) are adjacent means
either p = 5 or ¢ = r. It is clear, then, that if each
pair of matrices in {T(j, i)} can be made adjacent,
then {T(j, #)} will form a semigroup.

If each member of {T(j, i)} has the property that

T(, k) =T(x,y) incase |/ —k|=|x—yl, (43)

then any two matrices T(p, q) € {T(j, i)} and T(r, s) €
{T(j, 1)} can be made adjacent simply by relabeling
T(r,s) as T(q,s"), where T(q,s)e{T(j, i)} and
lg — 5’| = |r — s| so that

T(p,T(r, ) = T(p,PT(q, s") = T(p,s). (44)

Thus the collection {T(}, i)} can form a semigroup in
case the matrices in the collection are all conformable
and Eq. (43) is satisfied for each matrix in the collec-
tion. The same argument applies for the collection
{T'Gi, j)}. If, in addition, we include the collection
{T@@, 0} in {T(j, i)}, we see that {T(j, i)} can form a
monoid semigroup. The same argument applies for
{7, .

We see then that the predictive collection {T(j, i)}
and the retrodictive collection {T'(i, j)} can each form
a group only in case each member in {T(, /)} and each
member in {T'(i, j)} describes a deterministic system.
However, each of {T(j,i)} and {T'(i, j)} can form a
semigroup in case each member of {T(j, i)} and each
member of {T'(i, j)} satisfies Eq. (43). Physically, Eq.
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(43) restricts the transition probabilities to be a
function only of the number of measurements between
M, and M ; this requires that each T(j, i) be a function
only of the relative time difference between M, and
M;. Thus Eq. (43) is analogous to the quantum
requirement that U(z,, 1) be a function only of
|t; — 4] if U is to be a member of the unitary group.

We also demonstrated that a retrodictive transition
matrix is not the inverse of the corresponding pre-
dictive transition matrix. However, the equations
resulting from the sequenced event space clearly
define and distinguish between retrodiction and
prediction and show that one may always predict or
retrodict the stochastic process.

PROBABILITY FUNCTIONS IN /2

In this section we will demonstrate that proba-
bilities for simple paths in {E(C)} may be represented
as products of complex functions in /2, the space of
square summable sequences. From the isomorphism
of /2 to a separable Hilbert space ¥, we deduce the
existence of a continuous linear operator in J¢ which
corresponds to the transition probability of Eq. (27).
Hilbert space representations for probabilities of
simple paths in {E(C)} are shown to be possible
because of the positive-definite, unit norm and o-
additive properties of P.

Since P(p,) is positive definite, there exists a
complex function «; such that for each Px,

P(By,) = aiiony, (45)
and the phase of o, is arbitrary.

Using the unit norm property and the generalized
distributive relation, we see that

2 P(B) =1=3 axem,.

i ki=1

(46)

Thus the sequence {oy}y,~1 s, iS square summable
and is a member of /2. If we now consider the vector
[a(j)) defined by

'(Z(j» =k2—:1 Ck;‘ ij>9 (47)
where {lk,)}ki:l_z,.“ is an orthonormal basis for a
separable Hilbert space J€, then |a(j)) €€ only in

case {C,,} is a square-summable sequence.’® Thus, if
we define C;, as

Cp, & (o) | eIt (48)

we see that {C,} is square summable; therefore,
Jo(j)) defined by

Mm=mmwm#§%m> (49)
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is a member of J. Thus we see that for each square-

summable sequence {«; } there exists a vector |u(j)) €
J€ such that each member of {o,} has a representation
in J given by

o, = g [ (DI [N (50)
Thus we have established an J representation for each
member in the collection {o,} and therefore for
{P(By);-

Now let us examine the transition probability
Ty, Since Ty, is positive, there exists a complex
function for each k; and k; such that

e = KieiKiges (51)
and, since {T},} is singly stochastic, the sequence
{KinJr;=1.2,.. 18 square summable for each k;.

Therefore, there exists a countable orthonormal
basis {|k;)} and a member |Q,) € X such that for

(ks | 2 ()) () | K3y s (el K(j, i) [k (el K, 0 1) (ke | o)) (o) | K
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each k;

Ko = (k; | u)I(Qs, | QD (52)
We see from (51) and (52) that, for a given basis
{lk;)}, each member of the countable collection
{1Q4,)} is determined only to within a phase.

K, may be written in a different form since we
may associate with the collection {|Q, )} an ortho-
normal basis {|k;)} in ¥ by an operator K(j,i)
mapping ¥; onto X, i.e., for each k;

10, = K(j, 1) k2); (53)
thus we may write (52) as
Kyp, = (el K(j, 1) Tk (il KK Ik)E. (54)

With these representations for T, and P, we may
write the JC representation for the predlctwe random-
walk equation as

@Gy  ®

Cheal KF(j, DK, 6) [y (i) | i)y

; (5%

clearly, from this development, an JC representation can be generated for the retrodictive equation (30). This

equation would be given by

(k| i)y (i) [ k) s (il K'GGy ) k) (sl K™, ) L) <Ky | () () | k)

= 56
(i) | (i) (k;) K (i, KA, 7) (k) () | (i) (56)
where the operator K'(i, ) is constructed so that
, ) Qo LK _ (KU J) k) eyl KPG ) 57
ks = <Qk, | Ox) (sl K (i, HRIG, Jy Lk

the retrodictive transition probability, is reproduced.
Thus we have established JC representations for both
the retrodictive and predictive random-walk equations.

RANDOM WALK AND TIME EVOLUTION IN X

Now that we have established an JC representation
for the random walk equation, we may employ a
phase choice theorem established in a previous paper?
to establish another JC representation for the random
walk equation which will allow us to compare the
dynamics of stochastic and quantum theory.

This theorem demonstrates the existence of choices
for the phases of the sequence of products

{Kkjkiak,-}k,» =12,

such that Eq. (55) factors to yield (see Appendix A
for this theorem and its connection here)

ey o) o (R KRG, D IR e[ o))
(@) [t el KK D iy | )

58)

Equation (58) provides a very simple representation
in X for the dynamics of classical probability theory;
i.e., Eq. (58) may be written

W) = ZKG, ) o Ky, (59)
where g
al, & (e K, DKG, §) k)Y,
/() = I i) | aliE. (60)

We can further simplify by defining the operator S(j, i)

as

ko) (ks
su,z)—zl«,)' L 61)
a,h
so that Eq. (59) becomes
lo’ (7)) = S(j, i) ' (i), (62)

and we see that in a similar manner we may construct
this representation for the retrodictive case

I’ (@) = "G ) 1o'())- (63)
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Equation (62) is similar in form to the evolution
equation of quantum theory, although, as we will
see in the discussion to follow, the stochastic operator
S(j, i) differs strikingly from the quantum evolution
operator U(t;, ¢;). In addition to Eq. (62), we have
Eq. (63), the retrodictive evolution equation. No such
formalism appears in conventional quantum theory.

Thus we see that, for the measurement sequence
{Mg—> M,— - — M}, there exists a collection
{S(j, i)} of L(L + 1) predictive stochastic operators
and a collection {8'(i, j)} of 1L(L + 1) retrodictive
stochastic operators. Let us now examine the proper-
ties of {S'(7, /)} and {S(j, D)}.

First we see from Eq. (61) that

(ks K(J, 1) [k
(il K¥(, DK, D) k)
If we muitiply Eq. (64) by its complex conjugate and

sum over all |k;), then we obtain the isometric property
for S,

ksl SCi, 0y k) = 64)

SH(j,D8(7, D = 1. (65)
However, multiplying Eq. (64) from the right by its
complex conjugate, we see that S is unitary (S*S =
SS* = |) only in case K is unitary. Thus we see that S
is automatically isometric by construction, but can be
unitary only if K is unitary. This relationship of S to K,
as we shall see, has important physical implications.
In order to see these implications, we must explore the
properties of the collections {S( j, i)} and {S'(i, )}
The approach to the examination of {S(j, i)} and
{S'(i, j)} will be almost identical to our earlier approach
when we examined the collections {T(j,i)} and
{T'(i, /)}, and, not surprisingly, the results will be
almost identical. The complex analogs to Egs. (31)
are by the phase choice theorem

Uy = g (kal S(1, 0) [ko) oy s
Oy, = kZ (kal S(2, 1) [k Oy = E (kal S(2, 0) |ko) %y
1 kg

(66)
Oy = Z <kLl S(L, L — 1) !kL—d) Frz—

kz—1

= 2 (kp] S(L, L — 2) kg o) Lg—s

kp-2

_ = ;ch; S(L, 0) Jko) oy, -

Substituting the first of Eqs. (66) into the second
equation in the set and comparing, we obtain

Lzotk,, %. (kal S(2, 1) k1) (kaf S(1, 0) [ko)
= % (ol S(2, 0) Tko) oy, (67)
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so that we obtain the J representation of Eq. (33),

(kel 2, 0) [ko) = ;(kzi S(2, 1) [y} Kyl $(1, 0) fko),

(68)
which implies the multiplication theorem

5(2,0) = S(2, )SQ1, 0). (69)

This procedure may be repeated for the entire set (66)
to obtain the general multiplication theorem for the
stochastic operator set {S(j; i)}, i.e.,

S(L,O)=S(L,L—1)
X S(L—1,L~—2)---52,DS1,0) (70)
and similarly for the retrodictive set:
S0, L)=50,1)51,2)---S(L—-2,L—-1)
x S(L-1,L. (7)
In addition, we have the set {S(i, i)}, which by Eq. (64)
and the definition of {T(i, i)} is given by
{8G, 0} = {1.}. (72)

Suppose {S(j, i)} forms a subset of a group. It must
be true then that each member of {S(j,i)} has an
inverse. We show in Appendix B that, in case $71(j, i)
exists, then

P(ﬁki) = 6/:;‘70;‘” (73)

that is, the state of the system at M, must be precisely
determined. Consider the predictive random-walk
equation in case S73(j, i) exists for each measurement
pair in the sequence:

P(ﬁks) = z z T z TchkLﬂTkLﬂkL—z T Tklknp(ﬁko)’

kr—1 k-2 ko
(74)
which by (73) must reduce to
P (ﬁk.-) = Tkycz,—16“-1“-1'5“-2“_2' e 6koko’ . (75)

Equation (75) is the random walk equation for a
system which is deterministic from M, through M _,.
We see from this that, in case {S(j, )} is a subset of a
group, then the members of {S(j, i)} cannot describe
the most general class of stochastic processes. The
same argument applies for {S'(i, j)}.

Let {8(j, i)} denote the collection of members of
{8(j, 0}, {5'G, j)}, and {S(i, i)}. As we did for the
transition matrices, we may define multiplication
between members of {S(j, i)} and {S'(i, /)} and show
that,for ¢ and s each a positive integer such that ¢ > s,

/
Cpy, = z <kt, S(tQ s)S'(s, t) Iki”> ey >
ki

ty, = 3 (k) S, 08(t,5) KDy, (76)



110

Equations (76) are satisfied in case

S(t, )S'(s, 1) = S'(t, 1) = |,

S'(s, )S(t,5) = S(s,5) = |, a7n

but can be satisfied, as could Eqgs. (38), without the
conditions imposed by Egs. (77). In fact, if Eqs. (77)
are required of each S(j, i) and each §'(j, j), then the
system described by the collection {8(}, i)} would, by
Eq. (75), be completely deterministic. In addition, we
see that if {S(j, i)} is to form a semigroup, then Egs.
(77) must be satisfied if multiplication between
S(j, i)and S'(}, i) is to be closed in {8(, i)}. Therefore,
if {8(j, i)} forms a semigroup, then it must form a
group, and this group must be a unitary group since
each 8 € {8(}, i)} is isometric and has an inverse.

Now suppose that {S(j,7)} forms a semigroup. As
with {T(j, i)}, we must require that

S(Lk)y=S(x,y), l—kl=I|x—yl, (78)
that is, {S(j, )} can form a semigroup only if each
Se{5(j,i)} is a function of the relative time. The
same argument applies for {S'(i, j)}.

We are now in a position to fully appreciate the
difference between stochastic dynamics and quantum
dynamics. First we note that the stochastic evolution
operator S is, in general, isometric while the quantum
evolution operator U is always unitary.

We see that in case the collection of stochastic
operators {3(j,i)} for the measurement sequence
{My—> M,—--— M;} forms a unitary group,
then a system must follow a deterministic path
through the measurement sequence. We also see from
Appendix B that in case each member of the collec-
tion {S(j,7)} has an inverse, then {S(j, i)} is a unitary
collection and Eq. (75) implies that each measurement
in the sequence, except the last, yields a unique result.

Since the quantum evolution operator U always has
an inverse, we see that the quantum evolution equa-
tion, when subjected to the phase choice of Appendix
A, can only describe evolution corresponding to Eq.
(75). In case the quantum evolution operators form a
unitary group, then unitary evolution in J¢ can only
describe a deterministic stochastic process when the
phase choice is imposed. Thus we see that quantum
dynamics, i.e., unitary evolution in J, can never
reproduce the random walk structure of stochastic
processes. '

QUANTUM AND STOCHASTIC DYNAMICS
IN A SINGLE & REPRESENTATION

From the preceding section we see that quantum
dynamics and stochastic dynamics in J are identical
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only in case the quantum evolution equation is subject
to the phase choice of Appendix A and the stochastic
operator S is unitary. However, if the quantum
evolution equation is subject to the phase choice, then
the peculiar probability structure produced by the
“square” of this equation disappears; on the other
hand, if the stochastic operator S is unitary, then
the more general singly stochastic structure of
the transition matrices of stochastic processes is
restricted to the doubly stochastic structure of quan-
tum theory. Furthermore, if the phase choice is
imposed on unitary evolution in JE, then the ensuing
dynamical model in J€ can reproduce only a special
case, given by Eq. (75), of the random walk equation
29).

In view of this, it is interesting to note that
Nelson'** has derived the time-dependent Schro-
dinger equation from the diffusion equation. How-
ever, one may readily see from Chandrasekhar’s!®
derivation of the diffusion equation that the diffusion
format follows from the random walk equation (29)
only in case T(j, ) is doubly stochastic.

Such a result emphasizes the peculiarity of the
doubly stochastic “transition” matrix of quantum
theory. The quantum “‘transition” matrix is clearly
doubly stochastic since its elements are given by

A
T, = [k U5, 1) k1%,
and we see from this equation that since U is unitary,

2 T =2 Tog = 1. (80)
ki Tes

(79)

However, the stochastic representation with elements
T, = 15l SGs ) [kl @1

is in general not doubly stochastic since in general S
is only isometric and not unitary.

The above properties of the evolution equations
and the transition matrices of quantum and stochastic
dynamics provide the motivation for a more general
mathematical structure in J& which will include both
stochastic and quantum dynamics as a special case.
To do this, we simply hypothesize that each “state”
of a physical system has a representation by 2 member
of a separable Hilbert space J¢ and that the dynamical
evolution of the system is described by

‘O((t)> = S(t7 tO) l“(t0)>’

where S is, in general, isometric. The quantum dy-
namical description is given by a unitary S, and the
stochastic dynamical description is given by applying
the phase choice theorem to Eq. (82). In this way, we
encompass both the peculiar probability structure

(82)
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provided by quantum theory and the singly stochastic
transition matrix of classical stochastic theory.

CONCLUSION

We have discussed in this paper a novel formulation
for the o-algebra of stochastic chains and have seen
how the sequenced event space leads to the notions
of both prediction and retrodiction in stochastic theory.
We have shown also that the equations for stochastic
dynamics have a representation in a separable
Hilbert space J& which, in general, is distinct from the
conventional quantum representation in JC. The sto-
chastic picture in J¢ suggests a more general evolution
picture in J which includes quantum evolution and
stochastic evolution as special cases.

That retrodiction in stochastic theory is possible
is not surprising and, in fact, is necessary when one
considers the definitions upon which stochastic theory
is built. For example, consider the measuring sequence
{My-—> My — -+ — Mp}. Suppose we let N systems
pass this sequence one at a time, so that a moving
picture camera may record the configurations assigned
to a system as it passes through the sequence. Let the
ith frame on the film record the result of M;. Then
the passage of a single system through the L-term
measurement sequence will be recorded on an L-
frame strip of film, each frame containing the result of
one measurement. Suppose we record each system’s
passage through the sequence until we obtain N L-
frame strips of motion picture film. Suppose we mark
the first frame of each strip to identify the direction of
time passage for each strip. We may now place the N
strips into a box and shuffle them. If the configuration
of the environment is fixed for the N systems, then we
may operationally define the unconditional proba-
bility, for some p, during M;, as the number of strips
n(p,) which have the configuration p, on the ith
frame divided by the total number of strips, N, i.e.,

P(py) = n(p)IN. (83)

The unconditional probability for the sequence
(Co—>Cy—--v "’131% = Ciypy—>- _’ﬁk, —~Cj—>
+ ++— Cyp) then is simply
P (ﬁki "ﬁk,) = ’l(ﬁki —’ﬁk,)/ N, (84)
and the predictive conditional probability is given by
- P(ﬁki - ﬁkj) — n(ﬁki > ﬁk;)
P(py) n(p.)

P(pr, | e i <.
(85)

With these operational definitions, it is then absolutely
reasonable to define the retrodictive conditional
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probability
sy PP Bry) _ (B~ Pry)
P(po | pr) = — 0 = ——=15 (86)

P (ﬁk,) "(ﬁk,)

which, as we see from our example, is not anticausal
in nature but is a simple result of the a posteriori
nature of the film data.

From the above example, we see that we may
interpret the predictive and the retrodictive random-
walk equations in the following way: The predictive
random-walk equation will describe the diffusion of a
drop of cream placed in a cup of coffee. If we film
this process, then the retrodictive random -walk
equation will describe the “reverse diffusion process’
as it appears on a projection screen when the film is
run in reverse. We saw, however, from the analysis
of the transition matrices, that the retrodictive transi-
tion matrix is the inverse of the predictive transition
matrix only for deterministic systems.

When the stochastic equations were cast into their
respective J€ representations, we saw that the pre-
dictive evolution operator S and the retrodictive
evolution operator S’ defined predictive and retro-
dictive evolution in J¢. We saw that S and §’ are iso-
metric, but that S’ is S~ only for deterministic systems.
Furthermore, we saw that, in contrast to conventional
quantum theory, S is unitary only for systems
described by Eq. (75). Thus we saw that the stochastic
X representation is distinct from the quantum
representation so that stochastic processes cannot be
considered as a special case of quantum evolution.

We then postulated a mathematical structure
{Eq. (82)] in J which would include both quantum
evolution and stochastic evolution as special cases.
No basis was given for such a structure, but it is
envisioned that a more general definition of the event
space {E(C)} might well produce the more general
postulated structure. Recall that we required {E(C)}
to be a o-algebra and further imposed the generalized
distributive relation on {E(C)}. It is hoped that a
removal of the generalized distributive requirement,
or a mathematical generalization of the o-algebraic
structure of {E(C)}, or both, will produce the more
general evolution picture in J.

APPENDIX A
Suppose that each of {7y }i.—1,,... and

(Bt 0.

is a sequence of positive real numbers and that there
exists a real number P(p,) such that

©
P(ﬁk;) = Z Tkjkip(ﬁk{)‘

ki=1

(A1)
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Then there exists a sequence of complex numbers
{Kijx,}t;=1.2,., @ sequence of complex numbers
{ok }x,=1.2,.., and a complex number oy such that the
following equations are consistent:

gy = %Kkjkiukw (A2)
ki=1
P(Py,) = oo, (A3)
and, for each positive integer K,
Tkjki = K;rjkiKkjki ’ (A4)
P(fy) = oyt (AS5)

This theorem thus states that phases for the
sequence {Kih o }i-1.2... can be found such that
the double sum formed from the square of equation
(A2) reduces to a single sum of real numbers. Equa-
tions (55) and (58) are nothing more than the €
representations of Eqs. (Al) and (A2), respectively.

APPENDIX B

Theorem: Suppose that S is a linear continuous
operator such that S~ exists and /1 is a collection of
positive integers such that k; belongs to I only in case
ax, # 0. Then the equations

ot o, = 2 kI SUi, 1) 1K) (il ST(J, 1) k) oo, (BD)
ki

and
oy = 3, (k| SU, B) lks) oy, (B2)
are consistent only in case I has only one member, i.e.,
a, (B3)

Proof: Substitution of (B2) into (Bl) for o
produces

at, 3 (k1 SUs i) 1K) o,
kiel

=3 (k| S(i, i) 1ks) (ki) ST(i, 1) 1K) oty (B4)

kiel

= O

Rearranging, we obtain
2 (o, — <kt ST, 1) ke g oo, <kt S(J, 1) [k = 0,
kel
(B5)
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which may be written

2 (@, — <k S (G, 1) [ky) 2£)S(j, 1) = [0). (B6)

kiel
If $~1 exists, the collection {S [k;)}, s is a linearly in-
dependent set so that (B6) is satisfied only in case

(@, ~ (e S*C, ) [k oo, = 0, kye . (BT)

Since «;, is nonzero for each k; in I, (B7) is satisfied
only in case

oaf, = (ki S*(j, i) k) o, kie, (B8)

or
o, = kgl SCj, 1) 1) oy, ks €L (B9)

Thus we see that (B9) is consistent with (B2) only in
case the set {ocki} has only one nonzero member, i.e.,
I has only one member.

Let us examine the implications of this in terms of
probabilities. Since

P(y) = ICki | (D) = oz, = Oy, (BLO)
we see that the system must be in some initial state
of M. We also see then that the random walk equation
yields

P(ﬁh) = P(ﬁkj | ﬁl;,")akiki" (Bl‘l)
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The functions L‘”(Q)l, s
matrix and @, - -

®,) are defined by X* =
, @, are the invariants of X (basic symmetric functlons in the eigenvalues of X). In

Y L X%, where X is an indeterminate n X n

this paper the generalized Lucas polynomial L} is expressed explicitly as a determinant of order
r —n + 1 or as a ratio of two determinants of order ».

1. INTRODUCTION

The functions L)@y, -, ®,), k=1,-"-,n,
are defined by

n
X" =3 LoX"*, 1
k=1
where X is an indeterminate # X » matrix and
®,,---, D, are the coefficients of the characteristic
equation of X,

@

The function L7(®,, -, ®,) is called! the general-
ized Lucas polynom1al of degree r — n + 1 in the
variables ®@,, -+, ®, (LY here is U!™ in Ref. 1).
It has been shown1 that L7 is determined by the
recursion relation

= z(_ 1)k+1q)an——k.

Ly = z< D0, L 3)
and the initial condmons
(1(3 — L(;{ — L(n—2) 0’ L(n—l) 1. (4)

Explicit expressions of L{; for any r and tables of
LY, LY and LY for r=n+1,--+,n+ 5 were
recently given.!

In this paper L (®,, - -, ®,) is expressed explic-
itly as a determinant of order r — n + 1 or as a ratio
of two determinants of order ».

2. LY} AS A DETERMINANT
Equation (3)suggests the following determinant of
order r as an expression for L
= det (—H + @, — O,H
+oH (DTOHT, (9)

where H = ey + €3 + *** + €,,.1), H is the trans-
pose of H, I'is the r x r identity matrix, and e;; is an
r x r matrix with 1 in the position ij and zeros else-

(r+n-1)
Lnl

where. The expansion of this determinant, Eq.(5),

according to the first column, gives Eq.(3).The initial
conditions are fulfilled by defining a determinant of
zero or negative order by one or zero, respectively.

3. L") AS A RATIO OF TWO DETERMINANTS

Let x,,-**, x, denote the eigenvalues of the in-
determinate » X n matrix X. It was shown? that
L' can be expressed as a ratio of two alternants of

order n,
() (r)
Lnk =a, /vn ’

)

where v, is the Vandermonde determinant with rows

xt e x5 i=1,-++,n, and a"’ is obtained
from v, by substltutmg the row xi,- -, x, for the
row x7* «+- x» % in v,. From this expression of

L', which assumes the knowledge of the eigenvalues
of X, one obtains

(r) (r)
Lnk = ankvn/vn,

@)

which can be expressed® as a function of traces o; of
X, since (v)); = 0;.;2, and the determinant
aﬁ,’fvn , for example, is obtained from v by substituting
the row o,, 6,4, ", 0., for the nth row
Oyp_10,° * * Ogn_s Of U5 . The traces o; may be expressed
as polynomials in the basic symmetric functions

Q- , D, (0 =n).

4. REMARKS

(1) By multiplying Eq. (1) successively by ¢, X7,
i=1,---,n—1,and using Eqs. (1) and(2), one obtains
for all L), k=1, 2,---,n, the same recursion
relations as for L% [Eq (3)],

(2) The expression of L\ as a determinant is gener-
ally useful for analytical calculatrons. For numerical
calculations this expression may be more difficult to
use than the recurrence relation or the explicit
polynomial expression (if known)

(3) The rational expression of L [Eq. (7)] is only
formal. For r > n, it seems that it is easier to calculate

L% by using Eq. (7) instead of Eq. (5).

1 R. Barakat and E. Baumann, J. Math. Phys. 10, 1474 (1969).

2 Y. Lehrer, Rend. Circ. Mat. Palermo 6, 103 (1957).

3Y. Lehrer llamed, Abstracts of International Congress of Mathe-
maticians, Stockholm 1962 (Almqvist & Wiksells, Uppsala, 1962),

p- 39.
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Furry has given a formula for the normalization integral of a physically acceptable solution of the
time-independent 1-dimensional Schrédinger equation corresponding to a bound state. Considering the
wavefunction of a bound state in a single-well potential and using Furry’s formula and the connection
formulas discussed by N. Froman, we derive the normalization factor for the higher-order phase-integral
approximations introduced earlier by N. Froman. For the special case of the first-order JWKB approxima-
tion, the approximate normalization factor thus obtained is equivalent to that given by Pauli and Furry.

1. FURRY’S GENERAL FORMULA FOR
THE NORMALIZATION INTEGRAL

Consider the 1-dimensional differential equation
2 .

¥ | g By =0, M
dz
where E is a real parameter and Q%(z; E) is real for
real values x of z. If Q% is negative when |z] is suffi-
ciently large and z is real, this differential equation
has solutions tending to zero as z —» £ through
real values only for certain discrete values of E, which
will be called E,, where s can take the values 0, 1, 2,
-+, If Q% has certain properties, there corresponds
to every eigenvalue E, precisely one function y(z; E;)
except for a factor, which is independent of z. Thus
w(z; E,) is a solution of

2
f; Wz E) + QX EYp(z; E) =0  (2)

such that y(z; E,) - 0 as z — £ oo through real values.
For any real value of E (which may be different
from E,), we define y,(z; E) as a certain solution of
2

d—d;; wi(z; E) + Q%(z; E)yy(z; E) = 0, (3

[cf. Eq. (1)] which tends to zero as z — — oo through
real values. This solution is uniquely determined,
except for a factor which is independent of z but may
depend on E. We shall choose this factor such that

¥(z; Ey) = y(z; Ey). “)

Multiplying (2) by 9{(z; E) and the complex conjugate
of (3) by —u(z; E,), considering real values of z,
which we denote by x, and adding the resulting
equations, we obtain

d ., o
. [9'(x; EQwi(x; E) — 91'(x; E)p(x; EJ)]

+ [Q°(x; E)) — Q*(x; Byl (x; Eyp(x; E) = 0, (5)
where the prime is used for indicating differentiation

with respect to x. Integrating (5) from —oo to an
arbitrarily fixed point x,, differentiating the resulting
formula with respect to £, and finally putting £ = E,
and using (4), we get

L "yt fE 0%(x; E,) dx

0

, 0 ,
= [%“wi“- 24 6)

a E aE } z=z0: K=F 3.
For any real value of E we define y,(z; E) as a solu-
tion of (1), which tends to zero as z — + ¢ through
real values and fulfills the condition

Vo(z; Ey) = y(z; E)). G

Similarly as above, we get
[vtss B 2202 B s
@0 P B oE, T

0 4 0 *j|
= 2 ! — 5 — 9 . 8
[‘Pa 3E Yz Y2 3E P2 T (8)
For the case of the Schrédinger equation, which is

of interest to us, we have
Q%(z; E) = 2m[R)[E — V(2)], ®

and the derivative of Q% with respect to £ appearing
in (6) and (8) reduces to 2m/h?.

Equations (6) and (8) with Q2 given by (9), which
together give the normalization integral, were obtained
by Furry,® and formulas similar to Furry’s are used
in the treatment on pp 102-10 in Ref. 2. Since the
energy eigenvalues are nondegenerate, it is no
restriction to choose the wavefunctions to be real,as
Furry?! did. ’

2, BOUND STATES IN A SINGLE-WELL
POTENTIAL
We shall now assume that the function Q%*(z; E),
which appears in (1), is given by (9) and has precisely
two zeros, #; and f,, on the real axis. We further
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FiG. 1. (a) Qualitative behavior
of Q%*x). (b), (c), (d) Contours of
integration for obtaining w(x). Cuts
are indicated by heavy lines. The
parts of the contours which lie on
the second Riemann sheet are
indicated by broken lines. (¢) Phase
of ¢¥(z) on the first Riemann sheet
on the upper lip of the cut along the
real axis.

assume that these zeros are well separated and that no

Y a0
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other zeros lie on or close to the real axis. It has been
shown by N. Froman?® that two linearly independent
approximate solutions of (1), called phase-integral
approximations of order 2N + I, can be written in
the form g3(z; E) exp {%iw(z; E)}, where

w(xy; E) = wi(xq; E),

x; < 1y,

w(Xo; E) = wi(xo; E) = L(E) — wy(x; E),

w(xy; E) = L(E) + wy(x,; E),

1 1 4] 2 2 X
} —+ -+ » (a)
: = (b}
w \ /R
N ,I
(c)
v £ U
X 4 Xo ty
(d)
Ceesq ]
\ 1]
/ w
- tho
L 1 1 1 L
aZzexp{fxi | U aZ.]q2] 'Y o2 «exp -imi lq2] )
) iy
with the definitions (cf. Fig. 1)
ue)=if aem (11a)
re
wixi B =3[ az By ez, (11b)
I
0w wi(xa: E) = %froq(z; E) dz, (11¢)
i )= 4| q@ Bz
I'r7—To
1, < Xo < ty, (10b) = L(E) — wi(Xo; E), (11d)
X3 > ty,  (10c) wyxy3 E) = %Lq(z; E)dz, (11e)
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and

N :
4(z; E) = Q(z; E) 3 Yanlz; ), (12)
with the functions ¥,, given by the recursion formula
(8) in Ref. 3 with 4 = 1. It should be noted that in
formulas (6) and (8) in Sec. 1 the point x, is arbitrary
but that in this section the point x, is restricted to
a classically allowed region. As in Ref. 3, we use two
superposed Riemann sheets, which we cut along the
real axis from ¢, to ¢, and join appropriately along the
cut, getting a Riemann surface on which the functions
0(z) and ¢(z) are single valued. In formulas (11) the
phase of g¥(z) on the first Riemann sheet on the upper
lip of the cut along the real axis is shown in Fig. 1

The expressions for the first few functions Y,,(z; E)
in (12) are
Yo(z; E) = 1, (13a)
Y(z; E) = 2 (13b)
€2 1 d2€0
Yi(z;E)= — 2 —=—, 13
4(2 ) 8 8d£2 ( C)
1 deg\? 3 d2 1 d%
Yy(z; E =—23—(——")] —,
Wz B) 32[ 2] TR
(13d)
d d?e,\?
1 - s o 2]+ (2]
1 dZ[ (deo :l
— = |5 —
64 di®
5 4 1 d%,
— -— 13
~ 2840 T 1s ar (L3e)
with
. & 1 (d(QZ) : 2d2(Q2)]
=07 —Q0=——|5{—| —4Q0"—
=0 dz2Q 16Q6[ dz ) Q dz*
(14)
and
= f "0(z; E) dz. (15)

Formulas (13a), (13b), and (13c) were given in Ref. 3
whereas formulas (13d) and (13e) have been calculated
by F. Karlsson and the present author.
According to Ref. 3 we have the approximate quan-
tization condition
L(E) ~

(s+Pm, s=0,1,2,---,

(16)
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and according to Ref. 4 we have the connection
formulas

g2 (xp)l exp [—|wi(xy)]
— 2 lg7¥(xp)] cos [wi(xp)l — 37, (17a)

73 (xp)] exp [—|wy(x,)I]
— 2 |g}(xy)| cos [Iwy(xo)l — 3. (17b)

Equations (16) and (17) are valid for any order
2N + 1 of the phase-integral approximations used.

Remembering the definitions of y,(z; E) and
9y(z; E) and using the connection formulas (17), we
get the approximate formulas

pi(x1; E) ~ Cp lq=3(xy; E)| exp [—wy(x1; E)I,
X1 < ly, (18&)
P1(Xo; E) & 2Cy |q~¥(x,; E)| cos [[wa(xe; E)| — 3],
< xp<ty, (18b)
(pox2; E) & Cylq~3(xp; E)| exp [—|wy(xa; E)I],
xs > t,, (19a)
Polxg; E) ~ 2C, Iq_%(xo; E)| cos [|wy(xy; E)| — %],
t < X <1, (19b)

where C; and C,, which are independent of x but
may depend on E, are to be determined such that (4)
and (7) are fulfilled. Using (4), (7), and (16), we find
from (11d), (18b), and (19b) that

G, = (—=1)°C, (20)
when E = E;. It is convenient to impose the condi-
tion (20) also when E # E;. Substituting (18b) into
(6), using (9), and remembering that the prime denotes
differentiation with respect to x, we get after some
calculations

f lw(x; E)I* dx

2
”lm%wmm
+3q7 % {2[wi(xo; E) — 3m)]}
2 6E 10 4
—1q7q —Ecos [wi(xo; E) — i7)
HqﬁmwMﬁ—MEm@D
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Substituting (19b) with (20) into (8) and using (9), we
similarly get

f lp(x; EJI dx
£

h2
L lcm{ walxo: E)

% sin {2[wy(xy; E) —

pye inl}

+3q"

.2
+307% a—gcof [w(xo; E) — 3]

a ’
— 1472 %L cos® walxo; E) — %w]} @)
aE E~E,
Adding (21) and (22) and using (11d) and (16), we
obtain
0 hz
[ ax~2iee =2 up] e
o m OE EXE,

Requiring that
[t pppax =1,

we obtain from (23) and (11a) the following formula
for the normalization factor Cy:

1 w0 lf
— 2= ;E)d . 25
|Cyl? [m OE 2 qu(Z ) Z]EzEs ()

It is to be observed that formula (25) has been
obtained by using only approximations and restrictions
connected with the use of the phase-integral approxi-
mations and that (25) is valid for any order of these
approximations used.

We shall now discuss the derivative

31]'
E)d
oE 2 Jr, A5 E) dz.

Using (12) and (13), we obtain

(24)

1[ 4(z; E) dz
2 Iy

1 € €
= - JENL 4+ — ——
2LQ(2 ){ +2_Ty

32 dz
o @ ©G

de\' | (YT
128[560 lOeo(dg) + (d{z):l + }dz,

(26)
since the contour I'; is closed and integrals of total
derivatives with respect to { therefore vanish. In (26)
the numbers in parentheses below the terms indicate
the contributions from successive orders of the
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approximation [cf. (12) and (13)]. Using the formula

dd dad 2 d
——————— 27
PEd{ d(JE R Q dy’ @
which follows from (9) and (15), and defining
270 1 (d(Q2))2 2 dz(@)}
— 15— - 8Q" ———|,
T=% meE " 8Q6[ dz e

(28)

we obtain from (26) after some partial integrations
the formula

* 91

E)d
m6E2 I‘Lq(z ) ‘

1 1 (0 +7) €le + 2n)
= - ; E){1 —

2 I‘LQ (Z ){ + 2 8
(1) (3) (5)

dfises e (5 0]

[560(60 + dy) + 10(e, + n)( C)z

128
d €9 dz
20e
(dzl) BT
de, d’¢, d,
2 d_co EE 2 E;]} dz, (29)

in which only terms up to the phase-integral approxi-
mations of ninth order are included.

It should be noted that (26) and (29) still hold if
the function V(z) in (9) is any analytic function and if
'y is replaced by any closed contour.

When (29) is substituted into (25), one obtains a
formula for the normalization constant C;. For the
special case of the first-order JWKB approximation,
(25) with (29) reduces to the normalization formula
given by Pauli® and by Furry.!
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Conformal spinor calculus for an arbitrary Euclidean space E,, n even, n = 2, is developed, and
fundamental spin tensors for Clifford algebra Cl,,, of the space of representation E,., are calculated.
It is found that the conformal charge conjugate of a 2v-semispinor w3t differs from the relativistic, con-
ventional ¢, by the permutation of the semispinors and the factor

1 it—v

Var1 = — lg_l* YI1* ' " ¥Ya), ¢ = number of timelike dimensions of E,;

n!

namely,

vE = Fy,apT forveven, 1 odd.

This is related to the Pauli~Giirsey isospin group. The transformation laws for spinors and conjugate
spinors under conformal group are studied. Conformal identities for matrix elements and bilinear

covariants are indicated.

1. INTRODUCTION

The conformal group of the space-time especially
was studied after the discovery of conformal invari-
ance of the Maxwell equations.! It is possible that
conformal field equations for other zero-rest-mass
particles (graviton, neutrino) are valid. It is therefore
important to investigate the conformal properties of
the matter on the basis of group-theoretical method,
independently of any field equations.? Some argu-
ments for such an investigation are given in this
introductory section.

Although the Dirac equation for electron is not
invariant under conformal transformations, the com-
mutation relations between the 15 Dirac-Pauli
matrices are characteristic of the generators of the
conformal group of the space-time or of the iso-
morphic pseudo-orthogonal group in six dimensions.

The conformal structure of the Dirac matrix
algebra as a whole can be presented in a fully conformal
covariant form, independently of any field equation.®
Namely, the 15 Dirac matrices are unified in two
antisymmetric conformal “matrix tensors”

it:ztb=_ii;tay a’b=1’...’6;
i:};c = "%i?’[i?’k]’ i5ik = —iys¥, n
i = Fiyy, i = Fiys,

1 1
VYive + ViV = 28, Vs = s 3 Yu Ve

i4!]g]
g = det g,.
The indices + correspond to the two 4-dimensional
irreducible spinor representations of the proper
conformal group (the generators are I3 = 3ii%). If
d,, is the metric tensor and %24/ the antisymmetric

@

unit pseudotensor of the Euclidean space of repre-
sentation Fg (4 + + —+ —), then the commutation
relations are

3)

where |- --| is the sum over cyclic permutation of
indices (we omit the indices 4 in such obvious cases),
and the covariant law of multiplication for all the 15
matrices is

[iab9 icd] = 2i6!acibdl’ Tr iab = 0’

(4)

Co ie s cof
loplea = 6a[c6d]b + 16|ac'bd| = %eabcdefl >

whence, in particular,
iab = i(1/4!)€abcdefi6dief1 1 = :*:(1/6!)€abcdefiabi0di”;

(5
Yi¥e = & T Yi€mny™V" Vs, ©
YaVor = 6a’b’ + (’/3 !)ea'b’c‘d’e'yc'yd’ye”
a, > =1,--,5.
The fundamental formula (4) permits a conformal
derivation of bilinear relations for matrix elements:

Hi)n(Ns + 63,07 = 403,65,

6rjn(iab),:z + (iab)fnaﬁ + eabcde]‘(im)zn(ief)ft

= 20,0a0)m + 2020)2875 5

Om(ian)s — (iap)0% = %i(if[a);(ifb])lfna
30 W) = 640'1,97),

where (anti)symmetrizations are made independently
over the corresponding sort of indices. These con-
formal identities, based exclusively on the com-

mutation relation (2), unify conformally the identities
established by Pauli and Kofink,* and serve to derive

(N
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identities for bilinear covariants (Dirac-type tensors
or de Broglie-type tensors in his fusion method).
Some of these are indicated and discussed in the last
section.

In the present work, conformal spinor calculus is
developed, and conformal charge conjugation especi-
ally is studied. For generality, all considerations are
made for an arbitrary Euclidean or pseudo-Euclidean
n-dimensional space (n even, n = 2v). Thus we can
explain, for example, the normalization factors
and the symmetry properties of spin tensors. The
principal application is, of course, to the 4-dimen-
sional pseudo-Euclidean space-time (n = 4). How-
ever, the results can also be applied, for example, to
the Lorentz group itself, if considered as locally iso-
morphic to the conformal group of a conformal
Euclidean plane (n = 2).

For Minkowski space it follows that the conformal
adjunct spinor coincides with the conventional
(relativistic) adjunct spinor, but the conformal charge
conjugate spinor differs from the conventional
(Lorentz) charge conjugate spinor by permutation
of the semispinors and by the factor y;. The product
¥s®. has, therefore, a conformal meaning. This is just
the combination which appears in the transformations
of the Pauli-Giirsey isospin group (see below). The
conformal charge conjugate spinor can also be ob-
tained from the Lorentz charge conjugate spinor by
inversion with respect to the “spacelike hypersphere”
giX’x* — R = 0.

2. MATRICES

The conformal group of a conformal (pseudo-)
Euclidean space H, is locally isomorphic with the
pseudo-orthogonal group R, , of a pseudo-Euclidean
space of representation E,,, with supplementary
signature (4 —). The subalgebra of even aggregates
of a Clifford algebra Cl,,,,, v an integer, is isomorphic
to Cl,,,, which, in its turn, decomposes in a direct
sum of two Clifford algebras, each isomorphic to
Cl,,. The spinor representation of the group R,,,,
n = 2v, which for the proper (RP,)) and ‘“‘space-
time-like” (R%,,) components decomposes therefore
in a direct sum, can be constructed in the following
two simple ways, o being Pauli matrices:

. DE
ﬂa’ = Yar X Oy, .Bn+2= 1 X 03, ,3 =‘-—‘F1 X 03, (8&)

ﬂa’ = iyn+1ya' X 01, ﬂn+2 =1ix Oy, (8b)
a,b’=1,---,nn+1

(01 and o can be interchanged). Here y,, j, k = 1,
-+, n, are 2"-order Dirac-Pauli-type matrices of the
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starting Euclidean space E,,:
Yve + Vs = (Vi Vi = 2800 {Varr, vl =0, 9)

- (10)

pEf 1 i ) s
Y1 = __"_%'y{l VR Vel = 11
n!lgl

where ¢ is the number of timelike dimensions of
E,, n=2v», and g, is the metric tensor of E,, g =
det g;,. The 2"*1-order Dirac-Pauli-type matrices f,
of the space of representation E, , consequently
satisfy the commutation rules

{fgaa ﬁb} = 26abs {ﬂa ﬂa} = O,
ab, --=1,--,nmn+1,n+2,

(11)

with the metric tensor of the space of representation
E, ., being
&k 0
(60?)) == 0 1 0 N det 6110 = “—‘det gjk' (12)
0 —1

Although the representation (8b) presents some
advantages (e.g., for inversions, etc.),we shall use the
representation (8a).

3. MORPHISMS OF Cl,,

Let the fundamental spin tensors of Cl,, (which
give the morphisms of this algebra) be®:

@ A= |l4»|,A, u,v=1,---,2", which gives the
anti-automorphism of Cl,, of E,,, n = 2» (~ means
transposition),

v =AF AL (=1 = AJ, AT
A = (—POVA; (13)

(b) B = || B#*||,which gives the anti-automorphism

—Vi= Bf:'B‘l, (=1)"ps1 = BB,

B = (—1)»+0B, (14)
A= (_'1)vyn+IB = B?n%-ls
B=(=1)",uA = AV, (15)

(¢) C = |C¥|, which gives the pseudo-automor-
phism (dotted indices transform by means of the com-
plex conjugate matrix of transformation; the dot
denotes complex conjugation, and the asterisk,
Hermitian conjugation)

YJ = C)}jc—-l’ (T‘l)v_tyn+l = C).}n-t«lc—l’
CC = 41 according to
v —t=0,1o0r2,3 (mod4);

(16)



120

(d) D= D4, —y,=DyD7, )
(—l)v_tyn—id = D};n-f-lD—l’
DD = 41 according to
v—t=0,30r1,2(mod4),
D=(=1)7,.C= (_l)tc?)n-n’
C=(=1",1uD = (=1)'Dy,1.; (18)
(&) E=|E,l, yf=EyE™,
(=D'pn Ve = Ey,ET, (19)
E=A"C=8"D. (20)
(f) F= ”F[w“’ —VT = F‘ij——l’
(—=Dypa = Fy...F7 (21)
F=BIC = A™ID, (22)
E=Fy, F=Ey,.. (23)

C (or D) can always be.chosen so that E or F (some-
times both) become Hermitian.

For basis multivectors and pseudomultivectors, it
follows that

Vs Vi) = (= DFFEy, ey BT

— (__1)%k(k+l)F,y[jl N )’,‘,‘.]Fﬁl,
ParrVen Vi)™ = ("I)H%MHI)E%HVU& e yaE?
= (=) EEVEy e v aF
(24)

If E (or F) is Hermitian, one can write
By 7™ = (—1)%k(lc‘1)57[,v1 C Vg, etc,

(24)

i.e., the basis (pseudo)multivectors are E (or F)-(anti-)
Hermitian.
4, ADJUNCT AND CONJUGATE SPINORS

We define the adjunct spinor, the conjugate, and
“adjunct conjugate’ spinors as follows:

5= G = o*F =C'=B:,
) (p (PF_l % Pe 4 ' (25)
Po = =1B79, (pJec= %9,
with 4 according to
y—t=0,1o0r2, 3 (mod4).
One can choose another definition, e.g.,
¢r = ¢*E, = D¢ = BéE = A‘?’F’ (259
(pp)p = +¢@, with =+ according to

vy —t=0,30r1,2(mod4).

We shall choose, however, the usual definition (25).

ANATOLE P. HRISTEV

5. ROTATIONS OF E,

Under a (pseudo)rotation R(c’,) of E,, the spinors
of the spinor space S,, undergo the corresponding
transformation

9" = +Sg, Cjk%‘ = SVkS—la
sgn lcjkl Vnt1 = V1S

x = kaxk’

-1 (26)

The versors S can be normalized in different ways.
We choose the normalization for which ¢, transforms
identically with® ¢

SCS1=C, SBS =B, 5'=sgnlc’), todd,
= sgn |c*,|, teven,
(27)

where 7 and ¢' are timelike indices, s and s’ are space-
like indices of E,, and |c%;| and |c%| are determinants
in a (pseudo-)orthonormalized basis of E, . It follows

for the rest of fundamental spin tensors that
SAS = sgn [¢/,| - nA, SD$'=

L — ')’]FS_IF—I

sgn [c%|- D

= sgn|c’| nEST'ET, (27"

i.e., the versors § are A1 (or B~!)-(pseudo-)(anti-)
orthogonal and E (or F)-(pseudo-)(anti-junitary.

In this normalization the spinors transform as
follows:

¢ =ngST, Po=nPST

(28)

¢ =S, ¢,=S¢,,

6. BILINEAR COVARIANTS

The bilinear covariants and pseudocovariants
(Dirac-type tensors) transform as follows (1¢ and 2¢
are two arbitrary spinors):

Piyjy = pn Sk

DEF l%k(k-}—l)(k')—l 2%}[“ Vg ltp

= e, Pl (29)
Poein =" Pivos,

Bl l’(1’<')‘1 aiVin " Vi

= ey P
"Phn = lzph-.‘,-k, i = "Piris (29

and charge conjugate (pseudo)covariants transform
as follows:

DEF . —
p;l..in ék(k“’l)(k') ! 2¢cy[n Y 7% l‘pc
- ( 1);-[v(v+1)+k(k+1) I , )
~c DEF jEERE—Dp ry— o 1 (30)
PRI = (3 (Pc}’n+17[h Va1 e

_ Av(v—1)+E(k—1)1 5 *
=(=1 Py
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Further, we define the de Broglie-type (pseudo)-
covariants as
DEF . - -
sy = FEe g1yt O Vi P
— (_ 1)%[v(v+1)+k(k+1)] 12q ) ]
ntIEk?
~ DEF .44 (i 19 (31)
g = PR Gy Vi P
= (_1)%[v(v—l)+k(k—l)] 12q~j1~--jk ,
and the corresponding conjugate (pseudo)covariants
as

21 ¢ DEF .1p(k-+1) —12- 1, _ 12.%
jyeir = it KY)™ "@ye, Vg Pe =i

— (V1) +R(e+1)] 12
= (—1)iv L’ AR

21%¢ DEF ¢ L Lk(e—U( 11 25 1 (2)

Jrege = 1 (k1) @Y1V, " " Vid Pe

_12a% _ [v(v—1)+%(k—1)1 12 3¢
= G = (_1)% Y Gy dn-

Finally, one defines in a similar way the “differential”
(pseudo)covariants.

7. FUNDAMENTAL SPIN TENSORS

The generators of the group R, , are

lip = 3Bas Bl = BBy = 15 © s, (33)
by = Vv Friz:+2,a’ = —'fzt',n+2 = +3y,, (34
a,b=1,---,n,n+1,n+2,
a,b'=1,--- n,n+1.

In formulas where the signs 4 appear (as indices or
in the sum), we take the superior and inferior signs

separately. The inequivalent representations [ differ
by the sign of all y,.,a" =1, ,n,n+ 1.7

The fundamental spin tensors for E, ., are calcu-
lated in Table I. C is chosen so that for ¢ odd F and E
are Hermitian if F is Hermitian. For ¢ even, E is
Hermitian if E is Hermitian (then F is anti-Hermitian).
If we choose, however, iC instead of (_Z, then iF is

Hermitian and iE anti-Hermitian if F is Hermitian.
All properties (13)-(23) transcribed for E,,, and §’s
(instead of E, and y’s) are satisfied in the table.

The generators |a,,=iﬁab are F (or E)-anti~
Hermitian; consequently, the operators M,, are F

(or E)-Hermitian and satisfy the following commuta-
tion rules:

[Haba Mcd] = iélacﬁbdh F;lab = M:b @ M;b, (35)
[M::ztb'» Mcid = iélachid| . (35,)
In the “nondiagonal” (“physical”) metric d,,,
B | O
(0gp) = 0 —1], detd,, = —detgy, (36)

-1 0
a’b = 19... .,n905 w,
the “momenta” M,, give in E, the angular momentum

operator M, , the energy-momentum operator P,
the special-conformal operator K, and the dilatation

TasLE I. The fundamental spin tensors for E, .

1 I 11 v
t odd t odd t even t even
¥ even y odd » even » odd

(v — t odd) (v — t even) (v — t even) (» — t odd)
_ 0 A B 0 0 A B 0
A A 0 0 -8B A 0 0 -—B

(B = —yn+1A) (B = —yn-nA)

_ 0 —A B 0 0 —A B 0
B A 0 0 B A 0 0 B

(A = V'n+lB) (A = 77!4.18)
_ 0 -D Cc 0 Cc 0 0 D
C D 0 0 C 0 C -D 0

(D = 'y'n-i-lc) 0= —?H;C)
_ 0 D c 0 -C 0 0 D
D D 0 0 -C 0 C D 0

(C = —~yn..D) (C= 7’n+1D)

_ F 0 F 0 0 E 0 E
E 0 F 0 —F E 0 E 0

(F = Eyn) (F=Eyn)
) F 0 F 0 0 —E 0 —E
F 0 F 0 F E 0 E 0

(E = Fyn+l) (E= FYni1)
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operator D:

M& = =ty

Py =M= Mip + Mine = —4iy(yann F 1),
Ki = Miw = 3(Minie = Mins) = Hiy,(rann £ 1),
D* = Mg = My ne = £3iV0ir. (37
For the anticommutator of M%, one gets

2v—2 it—l
{Mabs Mcd} = %661[0641]1) :i: m

fn-3fn-
X €abcd.f1'".fn_szlfa s Mol 2’ (38)

where € is the Levi-Civita antisymmetric unit pseudo-
tensor in E, »:

€a1"'an+2 = ldet 6abl-‘% eal'“an+2’

&ME=1, g = (=D

8. CONFORMAL MATRIX IDENTITIES
For the conformal “matrix tensors” of arbitrary
E, (n even),

it:::b = 2M¢:ztb’ liaps 1eal = 2i6[acibd| >

(39
we obtain the anticommutator

{iab’ icd} = zaa[cad]b
2it—1
* T €apcar e fae

ifirfe, .. {fn-3fn-2 (40)
(n—2)!
and the following consequences:

ifai!b = (n + 1)6@ + iniab’ (41)

ip® =1, i% = 8,,0,, — 0 without summation,

(42)
%iabiab = 4(%‘Mjijk + PjKj + KJPj - D2)
= }(n + D(n + 2), (43)
it-—-l
o jc1z . . . jCn-1tn
o = & 7T €avorea] T (44)
1=+ it_l € #1082 . . . {Gnt19nt2
(n + 2)‘ a1 A2 ’
[(2k) !]_li[maz e iazk—lazk]
— ﬂ: it_‘l € ... {B2k+102k42 ., . i“n+lan+2,
(n 4+ 2 — 2k)r
(45)
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which give, in particular for y,,
it—v

(n—-2)!

l1...,in-2
X €ty tnyy s

1 it
Ei Y Vi = (—l)ik(k-’—” n — k)! Ynt+1

X €y p L ey (46)

ViVe = 8 — Vot

and(for y,.,a’,b'=1,--,n,n+ 1,
it—v
(n—- 1!

¢'1, ., 4Cn-1
X Ea’b'c'l'“c',,_fy Y »

YarVe = Oy —

it—v

1
= Yy = (—1 1x(k—1)
k!V{ Ve = (=1 (n — k!

@k+1 . o o )8
X €gryargy ¥ yrrit (47)

9. CONFORMAL CHARGE CONJUGATE

We adopt for E,,,, the same definition (25) and the
same normalization (27) as for E, (mutatis mutandis).
We limit ourselves in the following considerations to
the case I in the Table: ¢ odd, v even (the case of the
relativistic space-time E,). Then the following results:

p* + - =
w=( _), v =95 §=9'F
(4
ie, 9% = ¢* = ¢™*F,

VE= FrauPes Po= £Fevnn (48
where v is 2"*lspinor in E,.,, y* are 2'-semi-
spinors in E,.,, and ¢* are 2’-spinors in E,.
Therefore, the conformal adjunct ¢+ coincides with
the “relativistic”” one (i.e., with respect to the group
R,) @*, but the conformal charge conjugate y; of a
2’-spinor of E, differs from the usual, relativistic
conjugate ¢f = Co* = B+ by the permutation of
the spinors and by the factor y,,,! This is just the

combination which appears in the transformations of
the Pauli-Giirsey isospin group®:

(P' = GQJ + b75(Pc,
yspe = —b¥*p + a*y,@., aa* + bb* =1. (49)

Moreover, in the case v — r = 1 (mod 4) (the case of
relativistic space-time E,), the spinors

®= (Jlf/;) - (fyfmt)

or
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are reproduced by conformal charge conjugation:
®, = CO = [*. (51)

For f= 1 the spinors (50) are conformally self-con-
Jjugate! In the case of relativistic space-time E,, one

gets

o — —

® = ( ? +) or @ = ( Vi‘Pc), (50°)
V5P ¢

and (49) can be written in the following form (U being

a 2-order matrix):

Q' =UD or @ = U0,

where UU* =1, detU=1 (49)

10. PROPER CONFORMAL TRANSFORMATIONS

Let the conformal transformations in polispherical
coordinates® be

£ = A%E, 0,A% A = g, (52)

; D t odd (or sgn | A", for teven), (53)

7= sgn|4%,|,
with |4%,| and |47,] being determinants with space-
like (o and ¢') and timelike (= and +') indices in a
pseudo-orthonormalized basis in E,.,. For the
proper (C®) and space-time-like (C®*) conformal
transformations, we have, from Table I and from (27)
and (27'),

S = (S+ 0) Y. lBgi = ﬁS—ﬁy .B
0 §- ’ -t n+1=

Si?’mlc = yHICé?,

and, in particular,

S*:F = 7FS-I,  (54)

~ o F
yn+1BM::b = “M:;VnﬂB’ M(:ztby‘n—HC = ~¥54:1CMap
MyF = FMZ,, A°A%ME = S*MES7% (55)

therefore each of the two representations is equivalent
to the conjugate or complex representation of the
other (in the known sense of the Lie group theory?),
namely

M:z:z = “‘3’n+1Bﬁz:b('}’n+1B !
M%E = —7,..CMT(y,., O (56)
The transformation law for the 2’-spinors is
(pl:t — Sigpi’ (}:}f — 1'?99:2:5 1:!:
P F
P = VoS Vart®5, G =00 VanrS ™ Vot
(57
From the relations
?’n+1M:5cVn+1 = M}’Z, Vn+1P;tVn+1 = Kirr»
Vn+1D:tyn+1 = D%, (58)
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it is seen that, under the proper (pseudo-)orthogonal
subgroup R?, ¢F (and @) transforms identically as
ot (§); but under the translations gF transforms
just as ¢* under the special conformal transforma-
tions, and under the dilatations it transforms just
as ¢7.

For the inversion of all coordinates & it follows
that

S=if, St=4i: ¢ = tip*, §'*= Fig
9o = Figs, ¢ = £ifs. (59)
Since the &* are homogeneous, it must be assumed
that the spinors ¢+, in addition to the simultaneous
multiplication by —1 (as usual), can also be multi-
plied, one by +i and the other by —i.

11. IMPROPER CONFORMAL
TRANSFORMATIONS

For the improper conformal transformations C®
and Ct, it follows that

N "+
s'=(° S ) paaBEE =
s~ 0

$%ynC = “'J’n-ucs.ht §'=F = fjFS"71%, (60)
Ac Ad Mcid Sli:MabS:—li

and we obtain the following transformation laws for
the 2’-spinors:

(pri — Sl:}:(p¥ -ri —_ n(p:FSI—I:t
P = =918 Vur1@es Po = —TFeVnn

771'5”"1 :Fy’!H-lBa

—17F,
N Va1

(61)
(the spinors ¢* turn into ¢¥).
For the inversions 7, in £* (pseudo-orthonormalized)
(1,41 and I,., are inversions with respect to the
hyperspheres g;;x’x* F R* = 0), one can choose

Ip: S =y, or iy, ¢ = Va’(p:F or ii'ya'qjq:’
a=1-,nn+1, 62)
Iao:S% =41 or itgF=49¢* or iph

The inversion I,,, with respect to the ““timelike
hypersphere” x% + R® = 0 is remarkable, it trans-
forms ¢*, ¢, ¢F, and ¢F into T, §T, etc. (except
for a factor £1 ori).

For the total spacelike (P) and timelike (7)) inver-
sions we have, therefore, the equivalence

PT =TT 1,:5* = iypy~Tppalpi2: S = Lypy.

’ (63)

The conformal conjugation is equivalent (except
for a factor /) to the relativistic one followed by the
inversion I,, +1» With respect to the “spacelike hyper-
sphere” x* — R® = 0.
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12. CONFORMAL BILINEAR COVARIANTS

For the conformal “semi”~covariants (or “reduced”
covariants)

DEF o EF -
i = Z(Pi Eltbl(p:ts pi thi l(p:t,
Piy = =4 T VaVer O Pae = i Ve 9T,
a, b =1, ,nn+1, (64)
E - - o
x DIF WS ot = £2P Yl
. =
g8 = et = £ o 65)
the following transformation laws are valid:
C’: ps" = Dg> Pa = A" WA%pas,
Cst: pé’i = —poi, pi:b = —A Adbpul’ (66)
C*: pE = ~ps, D= —A"A%Di,

C': pi= = pgs  Dap = A%A%PLs
there are identical laws for ¢, and g,, (de Broglie-type
tensors).
13. CONFORMAL TENSOR IDENTITIES

In the Dirac theory of electron, when ¢ = %¢, the
conformal covariant p,, unifies the relativistic tensors
(densities): magnetoelectric moment M, = p;,, “spin

current” S; = p;;, electric current C; = p;, and
pseudoscalar I, = ps, (except for the dimensional
factors).

By contracting the matrix identities (7) with spinors,
one gets conformal identities for spinors and bilinear
covariants; for example,!! we have

Psl’s = PiOus> Do = €Peal™ (67a)
PoPas = Ft¥€apoaesP P, a,b,--=1,---,6 (67b)

(these identities are equivalent), and similar identities
for ¢,, and ¢,. The *“mixed” identities for Dirac-
de Broglie-type covariants are

%pflaqul = Po%‘sab, (683)
Polas + Pardo = ==F LR Ly (68b)
Po9ar — Pavdo = %ipf[aq b]* (68c)

In the quantum theory the operators p,, and p,
defined as normal products!? verify, e.g., the remark-
able (nonsingular) identity

a,b'=1,---,5 (69)

f o ' A—
Pra'P'v = PrP o = Goprs
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The identity (67a) gives a conformal Euclidean
metric as a quadrilinear form of spinors (or bilinear
form in mesonic field p,,) in the spirit of de Broglie’s
“méthode de fusion'®”” for gravitons:

Gy = ngjk = M;;M', + S8, —
(G5 = M, ST + CiL).

C,Cy
(70)

These results give new arguments for a further
investigation of the conformal properties of the
matter.
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A new approach to quantum electrodynamics is considered, in which photon spin terms are incorpo-
rated phenomenologically into the equations of classical electrodynamics in such a way as to yield quan-
tized equations in the Heisenberg picture, for which relativistic requirements are satisfied. Photon
momentum and energy analyses in the new formalism are then compared to the corresponding analyses
in conventional field-theoretic formalisms, and questions regarding mathematical and physical consis-
tency are discussed. Different notations are used to distinguish between physical and Hilbert space vectors,
noting that the Hilbert space of the vector wavefunction has a 3-dimensional subspace resembling
physical space, mathematically, in a way that allows interesting results, which can be described by two
formalisms when auxiliary notation is necessary to analyze relationships involving both kinds of vectors.

1. INTRODUCTION

The subject of photon spin, per se, receives rela-
tively little attention in discussions of electromagnetic
field angular momentum,* and this may be due to the
fact that quantum field theory attributes only a
limited physical significance to the concept of intrinsic
angular momentum for electromagnetic quanta,
when they are treated as massless vector bosons.?

Experiment also yields no compelling evidence to
suggest that photon spin should be emphasized more
explicitly, in theory, than is usually the case when it is
demonstrated to be derivable from its relative obscu-
rity in the framework of quantum electrodynamics.

It is desired here, however, to introduce it in a way
which is entirely direct and phenomenological, in the
hope that the circumspection afforded by this different
approach may serve to enhance the insight and per-
spective already made possible by the existing relativ-
istic theories of neutral radiation fields.

2. GENERALIZATION OF CLASSICAL
ELECTRODYNAMICS

Relativistic 4-tensors used here are expressed in a
contravariant form, such that, for two 4-vectors
a and b, the dot product (i.e., the scalar product) is
a-g-b, where g is the 4 x 4 metric matrix. This
formalism obviates the need for many subscripts and
superscripts, and keeps the Riemannian geometrical
aspects of the problem clear, because a-g-b is a
straightforward generalization of the 4-dimensional
Euclidean dot product, to which it reduces if g is
replaced by the 4 X 4 identity matrix. The 4-dyad ab
is then a second-rank 4-tensor, with trace a-g- b,
expressed in terms of the Riemannian dot product.
a = (a*) = (a°, a), using boldface letters for 3-space
vectors, with u = 0, 1, 2, 3.

A second-rank 4-tensor

F =P = ({7 ‘;)

using a 2 X 2 matrix array, in which f= F%, fis a
3-space row vector, F is a 3-space column vector, and
Fisa 3 x 3 matrix, expressed in 3-space dyadic form.
Superscripts # and » are standard relativistic notation
for contravariant tensors, although contravariance, as
opposed to covariance, need not be emphasized
explicitly in this context.

In the remainder of this problem, g is assumed to
be the Lorentz metric of special relativity, because
gravitational effects are treated as negligible, at least
to the extent of allowing g to be locally diagonalizable
to the Lorentzian form, for all phenomena under
consideration, so that general relativity, per se, is not
part of the subject of this discussion.

For the electromagnetic field,

0| —E
F =0A — (04) = |— s
E|ilxB

(1)

using contravariant 4-gradient operator 9, 4-potential
A = (@, A), electric field strength vector E, magnetic
flux density vector B, and 3-space identity dyadic I,
with (0A)" defined as the transpose of 94 and | x B
as the cross product of | and B, we see that the
dynamical equations are

0-g F=V, F=4ncl, 2)

where 4-current J = (cp, J) and covariant 4-gradient
V, = (0,, V) in terms of 3-space gradient vector V,
electric current density J, electric charge density p,
scalar potential ¢, and vector potential A. ¢ is the
speed of light in a vacuum.
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Using the field relations E = —0yA — V¢ and
B =V x A, with 4th rank 4-index e [whose compo-
nents are 41 when their indices are an even permuta-
tion of (0, 1, 2, 3) and are —1 for odd permutations,
and zero if any indices are repeated], we have the
second-rank 4-tensor
0| —B
G=3-g-e-g-A=(— , 3)
B|—IxE
the dual of F, obtained from it by a duality trans-
formation.?
The trace of the symmetric tensor F- g - Fis

Tr(F-g-F)= —Tr (G-g-G) = 2(E* — B,

©)

the well-known relationship yielding the classical
electromagnetic Lagrangian density (8)(E2 — B2).
The classical electromagnetic 4-tensor of energy-
momentum?® may be obtained as the traceless sym-
metric tensor

Bm ™M F-g-F+G-gG)

(%(EZ + B? )
= (4m)* .
ExB l%(E2+B2)l—EE-—-BB

()

Assume that the correct energy-momentum tensor I'
is

ExB

F=@n)(F-g'F+G-g-G)+ 40

( U cl‘)
Pt

where Q is a quantum term for the quantized electro-
magnetic field, with energy density U, momentum
density T, energy current density vector &, and
momentum current density dyadic I.

We assume that the particle component of the
electrodynamic problem is a Dirac electron field, with
spinor wavefunction ¥, having Hermitian conjugate
v', so that J = eyp'vy for electron charge e and
v = (c, v); then, using velocity operator v = ca with
o = oo (in terms of Pauli vector o, anticommuting
« and § of the Dirac theory) and introducing
particle 4-momentum P = (P, P) = p — ec™A4, where
canonical 4-momentum p =iid [so that cP, =
ih(0/0t) — ep and P = —ihV — ec*A, using i? =
—1 and 2#% = Planck’s constant], we may express
the 4-tensor of energy-momentum for the particle

field as
cT
— (O

3

(6

W

T = 3y (0Py) + 3Py)'y = (
o ¥ |
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where the energy density is

W = 4ey'Pyy + $e(Py)ly (8a)
=49'(v- P + pmcty + }[(v+ P + Bmcdyly,

(8b)
using the Schrédinger equation

ik %% = (v-P + fmc’ + eq)y, )

and where Tr (F) = y'Bymc?, m being the rest mass
of the electron. The momentum density is

T = $y'Py + $(Py)'y. (10)

The energy-current density is
IT = Jcyp'vPoy + 4e(vP)'y (112)
= ¢ + *Vx($yp'hoy), (11b)

using Eq. (9), and the properties of o, to derive Eq.
(11b). 3p'hey, occurring in Eq. (11b), is the electron-
spin angular momentum density. The momentum
current density dyadic is

T = {y'(vPy) + 1(Py)'p. (12)
¢ and I' satisfy the dynamical equations
Vo §=-V,.I'=—cW-g- F=§
= (59, F)=(cJ-E, pE + ¢ I x B), (13)

yielding the energy and momentum equations for the
electromagnetic and particle fields in terms of the
4-vector F, for which ¢F, = J- E is the power density
transferred by interaction of the electric field with the
particles, and the 3-space component ¥ is the Lorentz
force density.

Equations (5), (6), and (13) indicate that V,+ Q0 =
0, because the classical part of I' already satisfies
Eq. (13). However, if the vector cross product is taken
between the 3-space position vector r and the momen-
tum equations, then Eq. (13) yields the angular-
momentum equations,

Qex B +V-(—Fxr—1,
ot
=—a%(rxr)-—v'(—11"f)+rv

(14)

where ¥, is “the vector of 3 defining the vector of a
3-space dyadic to be that 3-vector which is obtained
by replacing all of its dyads by their corresponding
cross products (so that the vector of ab is a x b).
T, = $cQ,, because Eqs. (5) and (6) indicate that

=rx F,
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the classical part of I" is symmetric, and the vector of
a symmetric dyadic vanishes.
Equations (9) and (12) and the properties of o
yield
g, = ty'v x Py + 3(v x Py)ly

= = 2 (y'hoy) — Vachy'ay),  (15)

indicating that &, adds the spin component to the
particle angular momentum, in Eq. (14), assuming
that the current density dyadic of o is }y'voy +
I(voy)ty = cly'ay, usingv = cas,andoo + (o0)' =2I.

The T', must account for photon spin in Eq. (14).
Assuming a photon spin angular momentum density

8 with symmetric current density dyadic cg, it is

necessary that -
3Q,=—-0,8S—V.8. (16)

Equation (16), for the inclusion of the photon spin
component in Eq. (14), is satisfied if

0 ‘ —Vx$8
Q= =, N
V x8|lx(@8+VE —2Vx$

where G is the trace of . Equations (5), (6), and (17)
also give
¢c2%% —T'=VxS8§, (18)

consistent with Eq. (11b), so that the corresponding
densities, including the total densities (in the total
energy-momentum tensor § 4+ I'), satisfy similar
relationships. As the electron spin density is related
to the electron spin vector o, so it is assumed that
the photon spin density is related to the photon spin
vector s, satisfying sxs=is and s.-s=s*=
s(s + 1) = 2 for magnitude s = 1. s may be related
to the 3-space triadic | x | by using the representation
in Cartesian unit vectors é; ,with | = é,¢,, summed over
subscripts i = 1, 2, 3, and such that

0 | —iés| ié,
s =5 = iéy 0 | =i | =lsyl, (19)
""'iég iél 0
where s;; = —ié; x é;, allowing the triadic form
€i8yé; = —ié,(é; X €)¢; = —il x |. (20)

3. PHOTON WAVEFUNCTION

8 and s may be related by postulating a photon

wavefunction
¥,

¥,
¥,

¥ —
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in 3-component column matrix form with Hermitian
conjugate V' = (¥1, ¥, ¥]) in row matrix form.
The Hilbert space problem may also be treated on a
Cartesian vector basis, as in Eqs. (19) and (20), with
¥ = W4, in 3-space vector notation and ¥ = wie,,

assuming real &, , so that é! = é,. With this formalism,

@y

thus associating the 3-space vector W' x ¥ with the
intrinsic spin angular momentum of the electro-
magnetic field and thus giving another example of the
occurrence of the cross product in problems involving
angular momentum—although, of course, it cannot be
inferred a priori that this vector formalism should play
a role in relation to quantum spin.*

It is also assumed that there is a photon velocity
operator V such that

8 = h¥TsY = —ih¥! x ¥,

o8 = FPIVSY + J(VSV)'Y = 8, (22)

assuming that 8 is a symmetric dyadic equal to its

transpose §.

For photons in free space (not interacting with any
other fields), a simple Schrédinger equation may be
sought of the form

HY = ih o ) (23a)
ot
equivalent to
Ho‘l’:ihaa—qt,, (23b)

assuming Hamiltonian operator H, with dyadic form
H. For this case (free photons), H should be a
generalization of the classical relativistic Hamiltonian
<p, for particles of zero mass, and momentum vector
p (with magnitude p). Noting that the photon spin
vector s satisfies the identities

(ss)! = (ss)’ and (ss)’ — (ss) = il x s = is x |,

and assuming the simplification (for the free field case)
of letting V.W =0, the remaining mathematical
requirements are met by

H=c¢+p or H=iclxp=chl xV,

which yield ¢V x W = i(0W¥/0t), the same equation
satisfied by the complex vector X = E + iB when
J=0.

In this formalism V = ¢s, and Eq. (22) yields

§ = 1W1[ss + (s8)]¥ = ¥ . @

— Y — L(FY, (29)
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using (¥T¥)’ rather than WW¥T because the components
of ¥ are operators in the fully quantized field theory,
and Eq. (24) is written in such a way as to preserve
“normal ordering.”

V yields eigenvalues +c (corresponding to trans-
verse modes) and eigenvalue 0 (corresponding to
longituidnal modes),® while the field (assumed solenoi-
dal) is restricted to transverse modes, for which the
total energy equals the total volume integrals

f AXVTHY = (87)" f FX-X (29)
taken over the entire volume of the radiation. Equa-
tion (25),together with the fact that X satisfies Eq. (23),
may be interpreted by hypothesizing a Hermitian
operator O, such that O? =8zH and X =0V,

equivalent to X = 0.w, assuming that X is the
column matrix representation of X and O has dyadic

form 5

4. PHOTON MOMENTUM

For an isolated electrodynamic system (interactions
with other systems or fields assumed negligible), the
total physical momentum is | d®*x(? + I'), integrated
over the entire volume of the system and summed over
the electron and electromagnetic components. The
total canonical momentum of the system is

f dx(yp'py + ¥pY),

using canonical momentum operator p = —ikV.
For an isolated system, it might be supposed, axio-
matically, that the total physical momentum is equal
to the total canonical momentum, an assumption
which yields

f &xT = f P(EPY + cpA),  (26)

which, noting that I' = (4mc)'E x B — {V x §,
gives a relationship between the electromagnetic
wavefunction and field vectors, and can be analyzed
further by letting ¥ =¥, + ¥, and X = X, + X|,
withV-W, =0=V xW¥,,X; =VxA,,and X, =
—Vg,. It is possible, in general, to let V.- A; =0,
@) = ¢, and ¥l =W,, so that, introducing ¥, as
the column matrix form of ¥, it follows that

f d&Yip¥, = 0,

indicating the absence of momentum in longitudinal
photon modes.
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In Coulomb gauge (V- A = 0), the electromagnetic
scalar potential ¢ may be identified with ¢,, and
X, =iV x A — ¢ (9A/0r) with 2iA = A, — Al.

Of the various possible approaches to Eq. (26), the
axiomatic approach stated here seems to be the
simplest, and the equation simplifies further if

f @x(V x 8) = 0.

The axiom leading to Eq. (26) may be generalized
to the statement

fd”x(w*pw + ¥1p¥)
=fd3x(c_1°ll> +c7WU,$4+T) (27)

using canonical 4-momentum operator p = iid, so
that the 3-space momentum relationship is the same,
and the energy relationship follows from the Schro-
dinger equation with the assumption that the total
Hamiltonian is equal to the total energy for an
isolated system.

Thus, for an isolated physical system, the Schrd-
dinger equation may be generalized and stated
axiomatically as the condition that the only allowed
states are those for which the eigenvalues of the total
canonical 4-momentum operator are equal to the
eigenvalues of the total physical 4-momentum (i.e.,
energy-momentum 4-vector) operator (assuming that
the allowed eigenfunctions are the state vectors, or
kets, spanning the Hilbert space of the quantum
system in the completely quantized treatment of the
dynamical problem).

On this basis, the dynamical variables are operators
whose time dependence here results from the fact that
the mathematical problem is being treated in the
Heisenberg representation, which largely obviates
the problem of explicit consideration of the state
vector in this context, owing to the constancy of the
total system ket.®

5. PHOTON INTERACTION ENERGY

The simple Hamiltonian of Eq. (23), for the free-
field case, does not generalize in any obvious way for
nonvanishing J, and mathematical problems related
to this (the photon wavefunction and the Hamiltonian)
have been discussed elsewhere in other contexts.’

The problem is approached here by hypothesizing a
phenomenological photon energy operator T =
K + U, where K = cs - p represents photon kinetic
energy, so that T reduces to H when U vanishes.

U must then account for the potential energy of
interaction of photons with the charged particles.
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Here it is further assumed that additional Her-
mitian operators may be defined in such a way that
p = pp =pp, where p=|p| is defined so that
Hermitian operator p, acting on an eigenfunction of
p, multiplies it by the magnitude (absolute value) of
the momentum for that state and j, acting on this
eigenfunction, multiplies it by the unit vector in the
direction of the momentum. In this mathematical
formalism, then, we may let gradient vector V =
|V| V, where p = / |V} and V = ip.

Now we define the Hermitian operator 3 = -5,
with eigenvalues +1 and 0. Then K = cp3, and the
remaining mathematical requirements may be met
by letting U = (1 — 3%cp. For transverse photon
modes, 3% = | and U vanishes; it accounts for the
potential energy (associated with longitudinal modes)
through the relation

f EXTTVY = f P lepl,
= 8m) f Px(V o)

~3 f Pxpga,

assuming integration over the entire volume of the
system and assuming that ¥, and X, are connected
by an appropriate relationship, such as the O trans-
formation of Eq. (25). The operators defined in this
section may be used in the construction of such
transformations and in the analysis following Eq. (26).
The dyadic representation of U may be expressed as

(28)

VU = cpp.

For 3 = —1, the mathematical occurrence of
negative eigenvalues of K may appear to give some
basis for speculation about the physical meaning of
antiphotons; and while photon-antiphoton annihila-
tion, with creation of photons, may be regarded as a
meaningless process in which there is not really any
interaction, it can be noted that antiphotons, con-
Jjugate to photons of a given circular polarization, may
be regarded as photons of the opposite polarization.®

For establishing the total photon energy relation-
ship

f PP = (87) f PxXt-X (29)
and seeking an operator  such that Q=81 =
8wep(l + 3 — 3?), negative 1 may result in mathe-
matical problems which can be resolved by using
different representations of the square root of —1.
Thus, let i® = j2 = —1, assuming that ij = ji with
it = —i and j" =, so that Q may be treated as
formally Hermitian by substituting j for i/ wherever
necessary for that purpose.
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In this treatment, 3 may be interpreted as the
photon helicity operator, and the square root of 3
may be regarded as a Hermitian operator with
eigenvalues 1, 0, and j.

If K is generalized to {cp3, where { = +1, negative
energy can be prevented by forbidding negative (3
for physical reasons (unlike the situation for Fermi-
Dirac fields).

The mathematical methods introduced here are not
unique or exhaustive, and other approaches to the
problematical aspects of the discussion should be
possible. The problem of negative 02 or Q? can be
avoided® by transforming H and Y by constant
additive factors of indeterminate magnitude, adjust-
able to prevent occurrence of negative eigenvalues
within the range of physical validity or application of
the formulas (an example of unitary transformation
of eigenfunctions or base vectors in Hilbert space,
with a time-dependent transformation yielding the
new Hamiltonian, whose eigenvalues are displaced
by a constant additive factor, in this case), without
altering the physics.

Implicit in this analysis is the importance of the
physical theory being invariant under the operations
of the Lorentz transformation group, and the 4-tensor
formalism has been employed far enough (explicitly
in the derivations) to ensure that this principle is not
neglected in the results. This (a special case of the
principle of relativity) may be extended to general
relativity by defining generalized Lorentz transforma-
tion £ such that £'8f =(G6LY =G, for general
metric operator § = SgST, equivalent to the Lorentz
metric g by unitary similarity transformation S,
yielding £ = SAST, with A'gA = Agi! = g, indicating
the equivalence of £ to a Lorentz transformation A of
special relativity and illustrating the principle of local
Lorentz covariance (for regions in which § may be
regarded as constant).

Equation (21) may also be generalized by letting
Y = KW, in terms of unitary transformation R and
transformed wavefunction W, yielding 8 = — iAW .
(ﬁ‘l x?{)"w, where R is the dyadic form of
R1=R" The spin representation is RIsR <=
iR x .

6. CONCLUSIONS

Equations (6) and (17) satisfy the angular momentum
Eq. (14), as well as the standard energy-momentum
Eq. (13), in a manner which preserves the over-all
interpretation of the 4-dimensional energy-momentum
tensor of the electromagnetic field,? in spite of its
alteration from the classical form of Eq. (5).

Thus, the phenomenological formalism here satisfies
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the relativistic requirement for a Lorentz covariant
theory, although the approach (to the formulation of
quantum electrodynamics) differs considerably from
the manifestly covariant formulations of quantum
field theory.

Physical considerations here tend more than usual
to be manifestly consistent with the correspondence
principle, by reliance on the formal similarity between
the Heisenberg formulation of quantum mechanics
and the classical formulation of dynamics—although
the main emphasis, of course, is on the differences (in
particular, the spin terms), which form the crux of the
problem under consideration.

The photon wavefunction W', however, is treated
like a particle wavefunction, including first- and
second-quantization formalisms, and this differs from
the usual quantization procedure for the electro-
magnetic field in that it relies less on classical theory.
Relationships between the wavefunction method
(useful in this problem) and the field vector method
(more useful in general) are expressed in integral form
in Eqs. (25)-(27). Mathematical and physical problems
confronting the wavefunction formulation have been
discussed previously.”

APPENDIX: PHOTON SPIN EIGENSTATES

Interpretation of —il x | as a photon spin operator

leads to the interpretation of if x| =1xV as
photon helicity operator, with eigenfunctions ak, 3,
0) = é(k, 3) exp (ik - r — iwt) satisfying V x 4 = 3i,
and V x o = 3a', through use of the complex unit
vector é(k, 3) = 2-¥(é, + i3é,), where é,, é,, and k
form a right-handed set of real orthonormal vectors,
such that &, x é, =k, and wave vector k = ¢ ok,
in terms of angular frequency , and ©® = wf — k- 1.
é(k, 3) satisfies ik x é = 3¢, and is normalized in the
sense that &7 - é = 1, although é - é = 0.

The photon spin vectoris —ig" X # = —ié' x é =
3k, for which the second-order homogeneous electro-
magnetic field equations also have the real solution
2-3(at + 4) = é, cos O + 3é,sin O, representing a
circularly polarized mode, with right-handed polariza-
tion corresponding to 3 = 1 and left-handed polariza-
tion correspondingto 3 = — 1, thus indicating how the
photon spin aligns with the constant angular velocity
of the rotating polarization  vector. Longitudinal
photon solutions (3 = 0) do not exist.

For integration over system volume V the functions

J. EPSTEIN
u; = V-4i,, where subscript j <> (k, 3), satisfy
~fd“xu}; ‘w, =4,

and [ d*xu} x w, = i3kd,,, for Kronecker d;,.

Introducing annihilation operators a;, with corre-
sponding creation operators a!, yielding number
operators (a'a); for photon mode j, and,using summa-
tion convention over subscripts j and I/, we have
¥ = au;, 8§ = —ikialam] x u;, and A = c(hfw)} x
(a;u; + alu]), for quantized transverse modes (re-
placing summation by integration, where necessary,
as volume ¥V — o0).

Regarding relativistic requirements on constructs
used here, it might be well to note that some fault
has been found with the covariance of the standard
formulation of quantum electrodynamics,® so that the
findings of relativistic invariance here or claims of
physically possible results must be tempered by these
considerations.
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By SOy(n, 1) we denote the identity component of the group O(n, 1), by so(n, 1), the Lie algebra of

S0q(n, 1). We determine all those representations of the Lie algebras so(n, 1) which can be extended to a
unitary irreducible representation of the group and give explicit expressions for the generators. The

1971

general results are specialized to the cases n = 2, 3, 4, and 5.

1. INTRODUCTION
We denote by O(n, 1) the group of linear homo-

geneous transformations of the real (# 4+ 1)-dimen-
sional vector space which leave the quadratic form

A+xg+ o+ x5 —xin
invariant. By SOg(n, 1) we denote the identity com-
ponent of this group and by so(n, 1) the Lie algebra

of SO4(n, 1). The group SO(n, 1) contains n(n + 1)/2
subgroups of the type

-1 _
cos ¢ sin ¢
gii(t) = ) ’ >
—sin ¢t cos t
— 1_
1<i<j<n,
and » subgroups of the type
-1 -
g0 mia(t) = cosh ¢ sinh ¢
L sinh ¢ cosht_
1 <i<Ln.

The matrix g,;(r) corresponds to a rotation in the
(x;, x;) plane, and the matrix g; ,,,1(¢) to a hyperbolic
rotation in the (x,, x,,,) plane. The basis elements 4,;

of the Lie algebra so(n, 1) are defined by

d
Ay = & ()|, , (1)
and they obey the commutation relations
[Aiss Al = gnAu + gadix — gaAsn — 8ndins (2)

with g;; = +1 for 1 <i<n, gy, =—1, and
gi; = 0fori # j. In a unitary irreducible representa-
tion (UIR) of SOy(n, 1), the generators A, are
anti-Hermitian:

A;'Fa' = —A;. (3)
Throughout this paper we use the same symbol for a
generator A;; and the corresponding operator acting
in a representation space, instead of the more rigorous
notation p(4;;), which is used,for example,in Ref. 1.
By exactly the same arguments as in this reference
(pp. 13, 14), it follows that the representations of the
Lie algebras so(n,1) which we determine can be
extended to UIR’s of the group SOy(n,1). The
equation on page 14 of Ref. 1 reads in our case

2 2
A= Aij= —Sz+2 z Aij’
1<i<i<ntl 1<i<j<n
where
2 2
S, = Z Ai; — 2 Ainn
1<i<j<n 1<i<n

is the second-order Casimir operator of the Lie algebra
so(n, 1) and A is the Nelson operator of so(n, 1).
From relations(2) it is easy to see that a representa-
tion of so(n, 1) is completely determined if we know
the operators 4,5, Ags, * * * , A, 411, because the other
operators A,; can be expressed through them by
relations(2). The generators A4,; with 1 <i<j<n
are a basis for the Lie algebra so(n) of the n-dimen-
sional rotation group, the irreducible representations
of which have been determined in Ref. 2. Therefore,
the problem of determining the UIR’s of so(n, 1)
reduces to determining the generator A, ,.,. It
turns out that this can be done in a straightforward
way by using the same methods as in Ref. 2. This is
essentially a consequence of two facts: We reduce
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with respect to the maximal compact subgroup
SO(n), so that within a UIR of SO,(n, 1) a state is
completely labeled by discrete indices only. Further,
in a UIR of SOy(n, 1) an irreducible representation
of $O(n) occurs either with multiplicity 1 or not at all.
This has been shown by Dixmier.®

We give in Sec. 2 the results of Ref. 2 in a form that
is especially suited for our purpose. In Sec. 3 we
determine the operator A4, ,,, and give a complete
classification of the UIR’s of SOy(n, 1). In Sec. 4 we
specialize the general expressions from Sec. 3 to the
cases n = 2, 3, 4, and 5, and collect the results in
Tables III-VI. In the Appendix we compare the cases
n=2, 3, and 4 with the work of other authors.
Results similar to ours have been given in Refs. 4
and 3.

2. THE IRREDUCIBLE REPRESENTATIONS
OF THE GROUPS SO(n)

We give in this section the results of Ref. 2 with
some slight modifications of the notation due to
Hirai* and Pang.® The generators A4;; with 1 <i <
J < n form a basis of so(n) and obey the commutation
relations

[Aij, Aw] = 03 Ay + 0A — 03 A; — 05dy. (4)

There are some characteristic differences for n = 2p
even or n = 2p + 1 odd. In either case an irreducible
representation is determined by a set of p numbers
m;;, all integer or half-integer at the same time. We
denote a vector in a representation space by |m,;),
where m,; is an abbreviation for a complete set of
labels which determine an irreducible representation
and specify each vector within the representation
space uniquely. For n = 2p the complete scheme is
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and forn =2p + 1

[ms;) =
2p+1,1 Mapi12 Mlopr1,p—1 Mapya,
Mayy Mgy Myp 51 Moy p
My 1,1 Mapa2 Moy 1,p-1
myy My
msy
(6)

The first lines in (5) and (6) determine an irreducible
representation of so(n), and the other labels specify
a vector within a representation space. All the m;, are
integer or half-integer at the same time. The first
index in m;; has always the same numerical value as
the dimension of a rotation group an irreducible
representation of which it specifies. The indices m;;
obey the following conditions:

—Mgin1 < Moy K My <00 < Mgy e
< Mg < Moger s
(Mg ] K Migpq 1 K Mg <000 < Mg gy
< My g1 K My (7)

The index k goes from 1 to p — 1 or p for n even or
odd, respectively. The generators A4;;,, for 1 <i <
n — 1 are given by

ke
AZk,2k+1 |lu> = ZIA(Izk.j) Il2k,7’ +1)
j=

Map 1 Myy 2 Map.p-1  Mapp
Map1,1 Map_12 Moy 3,p1 k
— YA, — D |y, — 1), 8)
Moy 21 Mgy o2 Moy 9 p1 El ( 2k, i ) I 2k, j > (
r—1
[my;) : ’ P A1, 137 =§B(12k—-1,]') Hogmr,s + 1D
k-1
M M — Y Bya;— Dl — 1
nig =1
moy + iCy Ilij>' )
(5) The matrix elements are
1 k—1 . % k 0 . b
Ally,) = E(H [(oaers — 2 = Uy + ) ]) (q [(asrr — H° = (o + B ])
r=1 r=
r—1 \ -3
X (H [122k,r - l:k,j][lgk,r — (o + 1) ]) > (10)
¥

r=1
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k—1
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Bllyes,) = (H B, — lzk_l.,)f (fI &, — zék_l,,.))*

r=1 r=1

k—1 -1
X (lgk—l,j(4l§k—l,:i -1 ll(l;k——l,r - lgk—l,j)[(l%—l,r — 1 - l;k—l,j]) s

r=1

k—1

k—1 x -1
C2k = (1:[1 lzk—ml:Il I21c,r) (1:[ le—l,r(IZk—l,r - 1)) .

The indices /;; are connected with the m,; through

(13)
(14)

If the representations of so(n) are already known, the
determination of the representations of so(n + 1) is
reduced to the problem of specifying the action of
A, nr- It can be shown that the commutation
relations of so(n + 1) are equivalent to those of
so(n) and the additional commutation relations

b1, = Moy, + 1,
12k,i = Mg; + [ — 1.

[Aii1, 4, 1] =0, for 1<i<n—2, (15)
[An-l,n’ [An.n+1’ Aﬂ—l,n]] = An,n+1, (16)
[An,n+la [An.n+1’ An—l,n]] = _An—l,n' (17)

The result of these commutation relations are again
generators (8) or (9) with the matrix elements (10)-
(12); however, as a resuit of the commutation rela-
tions alone, the uppermost line in (5) or (6) respec-
tively consists of complex numbers z;;. They are
restricted to the labels m;; by the requirement of
antihermiticity . In the next section we see how this
fact can be exploited to allow us to determine the
UIR’s of SOy(n, 1) very easily.

3. THE UIR’s OF SOy(n, 1)

In this main section we determine an explicit
expression for the generator 4, ,.; of the Lie algebra
so(n, 1) and give a complete classification of the
UIR’s. As far as possible, we want to use the results
of the last section. Therefore, it is convenient to define
a new generator B, ,.;,which is connected to A, .1
by

An,n+1 = 18n,n+1 .

(18)

It is easy to see that the generators A4, ., with i =
1-+-n—1, and B, ,,, together obey the commuta-
tion relations of the Lie algebra so(n + 1), e.g., the
A;; with 1 < i < j < n obey relations (4) and B, ,.,,
satisfies relations (15)-(17), with 4, ,,, replaced by
B, ,.1. However, in a UIR of SOy(n, 1) we have now,
instead of (3),

(19
From these considerations it follows that we can
take from the last section all those results which were

— Rt
Bn,n+1 - Bn,n+1'

(11)

(12)

derived using only the commutation relations, and
then we have to impose as an additional requirement
the hermiticity of B, ,.,. Clearly, we have to dis-
tinguish again the cases n even or odd, and we begin
with n = 2p even. According to what we said at the
end of the last section, we get, for B, ,.,, from the
commutation relations, an expression which is given
by the right-hand side of (8) for kK = p. However, in
the matrix elements (10) the labels /., ; are not
defined by (13), but we now have

121)—(»1,]' = 221)—}—1,9' +ja j = 1 o 'P; (20)

where the z;; = x;; + iy;; are complex numbers.
They are strongly restricted by the requirement that
the so(n) labels m,,, ;,j = 1 - p, obey the conditions

@n

and by the hermiticity of B, ,.,. Equation (21)
means that, for j = 1---p — 1, the labels m,, ; obey
the condition

(Mypa] K Mype <0 Kimgy g KMy,

max __ min
Map,5 = Myp ji1s

j=1-p~—1
For this to be true, we need

A(mz) = A(m3,, — 1) =0 (22)
for j=1---p — 1. Equation (22) gives p — 1 con-
ditions for the z,, ., ;; we choose j =1---p — 1 and
get

(Capr,y +J = B =55 +j — 3

=(mp5a +j— 9. (23

From (23) it follows that z,,,, ;, withj=1---p — 1,

must be integer or half-integer, together with the

so(n)-labels my, ;, i€, zy41 ;= Myy ;= mpys =
myy".1 with the conditions

[Mg,1] < Migpin < Mppa < Myyiys

=---< Mypi1,p1 < Moy p

(24)

and my,,,;=0,%,1,--+,j=1-++p— 1. For the
remaining constant z,,,, , the only requirement is
that B, ,., be Hermitian, i.., that all the matrix
elements A4(l,, ;) be purely imaginary. For this to be
true, the expressions under the square root in (10)
have to be real and negative. The condition of reality
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restricts z,,,,,, to one of the two possibilities:
(25a)
(25b)

= Vapi1,p»

1
Z3p+1,p + pP—z

z +p—t=x +p—3
2p+l,p TP — 3 2p+1,p TP — 2.

The requirement that the square root in (10) has to be
negative means

(26)

for j=1,---,p. These p inequalities are a conse-
quence of the single inequality (26) with j = k + 1,
where k is the same as in the equation m,,,,, =

* = Mgy = 0, because in this case A(l,, ;) =0
for 1 < j < k. The origin of Eq. (26) can be seen as
follows: The denominator in the matrix elements
A(ly,, ;) is always positive, so that the whole numera-
tor must be negative. Now it is easy to see that the
expression

(Zapi1.p + P — D = (my,,; +j- 3)?

H [(laprr = 3 = (Iyy 5 + Y]
X [(lpya,r — %)2 —(lyy; + %)2]

is always positive, because Mg,y ; < My 501 <
Mgyyi1,541, and consequently the whole expression
under the square root of (10) is negative if (26) is
fulfilled. We consider now the condition (26) for the
two possibilities (25) separately. In the case (25a) the
inequality (26) is satisfied for arbitrary real y,,.; ,;
however, to avoid having the same representation
occur more than once, we make the restriction
0 < Yopi1.p- The equality y,,.;, =0 is excluded
because then A(l,,,) =0 for l,,=my,, = —3%
and A(l,; — 1) = 0 for m,, , = +4%. This case will
be included later. Here we have no further restric-
tions for the my,,; ;, with 1 <j<p—1, and the
so(n) content is given by (24). We call the representa-
tions of this series D(my,. 11" " Mopia1.p-15 Vapi1.p)-
In the case (25b) different possibilities occur. If
Xapi1,p = Mapy1,, 18 integer or half-integer, together
with the so(n)-labels, it can happen that the smallest
so(n) label m,,, is further restricted because, for
Mypi1,, + p = Emy,,, we have A(m,,, — 1) =
A(my, 1) = 0. That means that in this case the restric-
tions for m,,; are, instead of (24), my,, , + p <
Myp 1 < Mapir s, With myyys o, + p and my,, 5, j =
I---p—1,equalto}, 1, §,---. We call the UIR’s
of this type Dx(mg, 11" Mapi1.p15 Mapr1,,) aC-
cording to the sign of m,, ;.

Let us now assume that m,,,, ; # 0 and is integer
for 1 <j<p— 1. Then in (26) we have j =1, and
evidently the smallest value of the right-hand side
is }, so that (26) reads

(o1, +p— DL L @7
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To avoid having the same representation occur more
than once, we have the stronger restriction

0< X, +p—4<4 (28)

If on the right side the “less than” sign is valid, the
so(n) content is given by (24), all m;; integers, and we
call these representations D°(mg, 11" " Mypiy py;
Xsp41,p)- If instead the “‘equals” sign is valid, the
matrix element A(ly, ,) = A(ly,, — 1) = 0form,, ; =
0 so that the so(n) content is given by

Myy1 =0 < Mypi11 K Moy oy (29)

and the rest is taken from Eq. (24). We call these
representations  DO(mg,.qq* * Mapiy 5 Mapiq ).
There is a last case left. If m,,,, ; = 0for 1 < j < k,
the inequality (26) is

(Kaprro +p— D < (K + 3 (30)

By the same arguments, following Eq. (27) we have
in this case
0<xpp,+p—31<k+4i G1)

Completely analogous to the case (28), there are two
series of representation: for the “less than™ sign at
the right side of (31) the representations

k LY .
D*(myy i1 1 Mapit1,5-15 Xapt1,0)>

with the so(n) content (24) and 1 <k <p — 1, and
for the “equals™ sign the representations

D¥(Myp 101 * " * Mapia,po15 Mayit, )
with the so(n) content

Map1 =" = Myp e =0 < Mypiy g
<o Simyyy, (32)

withl <k<p-—2

Now let n = 2p + 1 be odd. Then the generator
B, ,.11s given by (9) with &k = p + 1 and the matrix
elements (11) and (12). The whole discussion is similar
to the case of n even, and so we give only the major
steps. The irreducible representations of so(n) are
determined by the labels m,,,, ;, 1 < j < p, with the
condition

0<my,1 < Mopr1e L * " K Myyiy,. (33)

In the matrix elements B(l,,,, ;) and C,,,,, there
occur p + 1 complex constants z,,,, ; which are
connected to the /,,,, ; through

(34)
The inequalities miit, < my,y, and mi¥ , =
mp, 1, for 1 < j < p — 1, give p conditions which
restrict the z,,,,% for 1 <j < p to integral or half-
integral values which fulfill

bpses = Zypre s+ — 1

|Maproal < Migpigq < Mypia2

S T _<_ n12p+2,p S m2p+1,17 N (35)
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The last constant z,,,, ,.; is restricted by the hermi-
ticity of By i1 9,.2. With the same arguments as
those for n even, we get the following two possibilities,
which are analogous to (25),

Z2p+2,p+1 + P = ’:y2p+2,p+1’ (363)
Zaprz,prt T P = Xapio pa + P (36b)

and the following inequality which is analogous to
(26),
(Zaprz.pir + PP < (ypiap + K2 37

Again, k is the highest value of the second index j
in my,,, ; for which m,,,, ; = 0. If all my,,,; # 0,
then k = 0.

Now from the hermiticity of By, ;9,4 it follows
that for C,,,, £ 0 only case (36a) can occur. The
same arguments as for n even give the restriction
0 < Voprzpr1. The my,.5;, 1 <j<p, have the
range |Myyyq 4], Mapa,; =0, %, 1. The so(n) con-
tent is given by (35). We denote the representations
of this class by Dm0 ¢ * Mapig 5 Vapsa pra)- FOT
(36b) to be allowed, it is necessary that m,, ., = 0.
It may happen that some more of the my,., ; =0,
with 1 < j < k < p. Then we get from (37)

0< X2pte,p+1 + P S k’
and from (35) it follows that

(38)

Mypiay = """ = Mapyy g = 0.
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The equality x3,,5 ,.; + p = 0 is excluded because
this case is already contained in the class

D(Myyi0,1" " Mapie,n; Dapio.pra)-

If the “less than” sign at the right side of (38) is valid,
we have no further restrictions and denote these repre-
sentations by D¥(Mypip k41" Maprons  Xapiz.pe1)
with 1 <k < p. If the “‘equals” sign is valid, we
have Xy,.0 o1 + p =k = Mgy 411 + p. We denote
these representations by D¥(mgpigpi1° " Mypia s
Mypia pi1)- NOW 1 < k< p—1 and, in addition,
Mypsax = 0. The results of this paragraph are col-
lected in Tables I and 1I; the identity representation
has been omitted in these tables.

4. SOME SPECIAL CASES

In this section we specialize the results of Sec. 3 to
the cases n = 2, 3, 4, and 5. We give explicit expres-
sions for the generators A;;.,, i=1--n; the
classification of the UIR’s is given in Tables HI-VI.
In the coordinate systems the coordinates of each dot
represent an irreducible representation of so(n). In
the Appendix we compare our results with those of
other authors. The generators A4, ,,; and B, ., are
always connected through 4, ., = iB, ,..,.

(@) n = 2:Ina UIR a state is completely labeled by

;) = (::1 ) (39)

TasLe I. The complete list of UIR’s of SO4(2p, 1).

Representation and conditions for

Mypi1,1° * * Mapiy,p-180d 2301, SO0(2p) content
D(mzn+1.1' . mzn+1,:z—1;i}’zp+1,p) Imzn.ll KMy L K Mapiyp1 L Myp,yp
'n211+1,5=03%’1)“.f0r1 S] SP -1
Zaprr,p TP — b= Yapi1,95 0 < Yapir,n
Do(m,, 1,10 mzn+1,p-1;xzp+1_m) lmzn,1| <mgyyn L0 <L Maypit,p-1 < Map,yp
’"2n+1,i=1,2’3""f0r1 S]SP—‘I
Zapats = Xopi1,05 0 S Xopnp +p— 3 <3
D112y, 1,17 " Mapia,po1 Mapir,n) Hzp,1 =0
Mypsr,; =1,2,3,- - forl Sj < p— 1 Mapiyn K g0 K00 K Mypyr,poy K Mgy,

Zapit,p == Mapy1,ps Mapir,p + p =1

D¥(Mypiapir* * " Mapia,no13 Xepi,0)3 1 S K sp-1
o J0for 1 <<k

T, fork + 1K< p -1
Zypit,p = Xopi1,05 0 S Xopri,p +p— 3 <k + 3

D¥(Mapiy k1™ " Mapiy,nons Mapirp), L Sk S p—2
o [0for 1 <<k
2p+1,7 ‘1’2,3’.fork+1$jsp—‘1

Zypr1,p = Mapi1,ps Mapsr,p+p =k + 1

Dt(mzn—l.l Tt Mapyy,pa) mznnm)
m2ﬂ+l,i=%,1’%""forl S]SP -1
Zopit,p = Mape1,ps My +p=4,1, 3+

Map;=0for1 <j<k

0 < Mgy iy T Mloprrpny K070 < Myprn, o1 K My

Mayp,;=0for 1 <j<k+1

Mapiapir S Mapiiz S0 00 S Mapigpa < My,

Mapit,n K 2oy L Mapin,1 K00 € Mapyg,po1 K Mgy ,p
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TaBLE II. The complete list of UIR’s of SO,(2p + 1, 1).

Representation and conditions for
Mypig,’ " " Mapra,p AN Zopyp,pi1

S0(2p + 1) content

D(mypio,1* "  Mayra,p; iy2y+2w+l)
Mapie,; =0,3,1,---forl <j<Lp

Zoprapr1 TP = i)’zwz,pn; 0L Yepi2,p+1

D¥(mypia,ii1 * * Mapia,ns Xap 2,0e1), 1 S K <p
f0for1 <j<k
1,2,3, - fork +1<j<p
Zipizpi1 = Xppie,p415 0 < Xapyoon +p <Kk

Mapie,i =

DX(mypia,ii1 ™ * * Mapia,ps Magea,oin)y 1 S k <p-1
Oforl1 <j<k
1,2,3,---fork+1<j<p

Zypi,p41 = Mypiz, pi1s Mapr,per + P =K

Mypie,; ==

Mapiza) < Plaprr1 € 70 < Mygpys,n < Mapi1,p

Myppr,;=0forl <j<k—1

0 < Mypiae S Mapra e 000 K Mypap,p < Mapia,y

Mypi,;=0forl <j<k

0 < Maprop < Plapiopin < 0 L Mapra,n < Mapy,n

TasLe III. The UIR’s of SO,(2, 1). The generator is given by Eqs. (41) and (42).

Representations Conditions for zg, SO(2) content
D(iysy) za+ 3 =iy, 0 <y —® < my < +, integer or half-integer
D(x3) Z5 = X5, 0Ly + 3 < 3 ——| - ——
m21=05 :‘:ls :tz!'.' 0 m2|
D+(mjy,) Iy =Myymy+1=41,%-- myy 1 < my,
e e I e
0 my! "
D~(myy) Same as for D+(mjy,) my + 1< —my,
“.—’ﬁ—‘——'
my, -(m;ll) _é—

TasBLE IV. The UIR’s of SO,(3, 1). The generator By, is given by Egs. (45)-(47).

Representations Conditions for my; & z,, SO(3) content
D(my;, iye) |myg) =0, .}, 1--- [my| < my,
Zgp + 1 =iy4;0 < yys +————
0 My M
D(xg5) my =0 0 < ms
Zyp = X230 < xpp +1 < 1 PP -
0 m
31
From Secs. 2 and 3 we get specified by the labels
. My Z
Az [Myy) = imyy my,), (40) ! *
|Pes) = | My 43)
Byg 1My = Almyy) (Mg, + 1) — A(myy — 1) jmy, — 1), Mgy

@n
There is only one matrix element
A(my) = }(za + D ~ (my + DI

In Table I1I the classification of the UIR’s of SO,(2, 1)
is given, and in the Appendix these results are com-
pared with those of Bargmann.’

42)

(b) n = 3: A state |m;;) in a UIR is completely

The generator A, is given by (40) and, for the genera-
tors 4,3 and By, , we get from Secs. 2 and 3, respectively,

Agy [my) = A(myy) [myy + 1)

— A(my, — 1) [my, — 1), (44)
By, |myy) = B(myy) [mgy + 1) + iCy [myy)
— B(mg, — 1) mg; — 1).  (45)
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TaBLE V. The UIR’s of SO,(4, 1). The generator By is given by Eqs. (50)-(52).

Representations Conditions for mg;, & z;, S0(4) content
D(my,, iys-a) ms; =0,4,1,--- lm41| Sy < my,
Zp+ § = i}’szg 0< Vsa My
P
1 | '
Do(mﬁl’ x52) ny, = 1’2’ 39“' ¢ ¢ ‘ ‘
Zio = X530, 0 < x5+ 3 < % * oje o
M
"msl ‘rrn& )
D' (xys) mg =0
Zss = X505 0 < X2 + 3 < 3
D*(myymy,) ms;=1,2,3,+-- myy =0, mg, < mys
Zgp = Mgy, Mye +2 =1 m
a2
My
i m
4i
D (mg,, msz) my=14%,1,3,-- mgy + 2 < myy < myy < gy
Zgp =Mge,M5e +2=14,1,%,- -+ m Voo
1 < msy +2 < myg, or 42 llii
1< mss + 2 £ m, for Mgy, Mgy
integer or half-integer, respectively Mg & ® 0o
i r:nS122 r'nsl m4|
D-(msz, myy) Same as for D*(mj,, m;.) Mg + 2 < — myy < Mgy < My,
P e
KX
¢ o0 0 M
Y 'Pnsl —(rrgEZ)l

The matrix element A(m,,) is the same as (42), except that zy, has to be replaced by mj, with the condition
|mgy| < my, . The other matrix elements are

T2 213 [miy — (Mg + D*|[(z40 + 1* — (mgy + 1)°] .
B(my) = [, mm+n1( AT Tt y (46)
= My " My(Z45 + 1) . (47

(my, + Dmy,

In Table [V theUIR’s are classified, and in the Appen- The generators A,, and A, are given by (40) and (44),
dix the connection with the notation of Gel'fand er al.® respectively; the other generators are
is given.

Ay |my) = B(mgy) [mgy + 1) + iCy |mgy)

¢c) n = 4: A complete labeling for a state |m;;) in
© P & s — Bmy — 1) gy — 1), (49)

aUlR is
M5y Zss Bys Imyumys) = A(my) Imgy + 1, myp)
Im“) = m4l m42 . (48) + A(m42) lm4l’ m42 + 1>
mgs, — A(mg — 1) [myy — 1, my,)

Moy — A(my — 1) [myy, mgy — 1), (50)
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TasLe VI. The UIR’s of SO,(5, 1). The generator is given by Egs. (55)-(58).
Representations Conditions for mgy, mMee, & Zas SO(5) content

D{(mg1, mgs, i)’as)

DY(mgy, Xgs)

Mgy, mey =0,4,1,- -
0 < gy < gy OF
} < mgy < mg, for mgy, Mg,

integer or half-integer respectively

Zgs + 2 = iygs, 0 < Js

Mgy =0;mgy =1,2,3,- -~
ng=xsa;0<x%+2<l

mey £ My < Meg < Mgy

I
i

- t
I lms(‘ Me2 Mg

0 < M5y < Mgy S Mg

62 Mgy
D(mqgz, mgs) mgy =03 mg =1,2,3," -~ msy = 0, mygy < Mgy
Zgy = Mgy
Mgz
62
! M
D(x4) Mgy = Mgy = 0 sy = 0,0 < m;e
Z“=x“;0<xqa+2<2 Mg,
! My

The expressions B(mg,) and C, are the same as (46) and (47), with z,, replaced by m,, with the condition
Img| < myg < myy. The matrix elements 4(my;) and A(my,) are

[(mg + 1 — (mg + %)2][(252 + 9’ — (my + %)2]

A(my) = Himgy + D — (mgy + mf(

[(my + 1)° — mil][(mm + 1) ~ (mgy + 1%

)%, (51)

A(mig) = H(mgy + BF — Omgy + %)21*(

The UIR’s of $O,(4, 1) are classified in Table V, and
in the Appendix we compare these results with those
of Dixmier! and Strom.®

(d) n = 5: A state [m,;) is completely labeled by

Mgy Mgy Zgs
|mi;) = § my myy . (53)

The generators A, Ay, and Ay, are already known
[(40), (44), and (49)]. The remaining two generators

[(msy + )° — (mye + 3)*N(zse + 8° — (M + %)2])% (52)
[mzl — (my + 1)2][m421 — (mys + 2)2] ’

are

\ Ags Imgmys) = A(mg) Imy; + 1, my,)

+ A(myy) [myy, mys + 1)

— A(my — 1) [my — 1, myy)

— A(mg — 1) Imyy, myy — 1), (54)

By |msamgs) = B(myg,) [mgy + 1, mgy)

+ B(msgs) [msmsy + 1)

+ iCy |myymgy) — Blmy — 1)

X |mg — 1, mgy) — B(mg, — 1)

X |mgymgs — 1). (55)
We get A(my,) and A(m,,) by replacing z;, through
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Mg, in (51) and (52) with the condition |my,| < myg < my, < mg,. The other matrix elements are

B(my,) = {[m% — (ms + 12)[(mg + D? — (mg, + D}

[mt2i1 — (ms; + 1)2][(””62 + 1)2 — (m5 + 1)2][(263 + 2)2 — (ms + 1)2]

* ((mm

+ 1)2[4("751 + 1)2 — 1[(mse + 2)2 — (m5 + ])2][(’"52 + 1)2 — (ms; + 1)2]

)%, (56)

B(mgy) = {[m2y — (msy + 2%1[(mgz + 1) — (mz + 221}

( [m§1 — (m;, + 2)2][(’”62 + 1)2 — (mss + 2)2][(263 + 2)2 — (ms + 2)2] )% (57)
(mse + 2)2[4(’"52 + 2)2 — 1][(m;, + 1,)2 — (msy + 2)2][’”%1 — (Mg + 2)2] '
L= mg(myg + 1)mg(mes + 1)(zg3 + 2)_ (58)

The classification of the UIR’s of SOy(5, 1) is given
in Table VI.
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APPENDIX
In this appendix we compare our special cases of
Sec. 4 with the results of some other authors, for
n = 2 with Bargmann,” for » = 3 with Gel’fand et al. ®
for n = 4 with Dixmier* and Strom.®

(a) n = 2: Our generators are related to those of
Bargmann’ through A4,, = iH, and A,; = iH,, e.g.,
By, = H,. Our choice of phases is such that 7,, = 1.
The connection between the notation in Ref. 7 and
for ours is given by the following diagram.

(ms + Dmg(msy + 2)(msy + 1)

Our series D%(x3,) is the part of CJ in Ref. 7 for which
0 <g< 4%, and our D(iys) is the union of the
remaining part at Cy with } < ¢ and the series C3.
Our series D*(mg,) are directly related to the cases
Dj of Ref. 7.

(b) n = 3: It is easy to see that Gel'fand et al®
denote our By, by Fy. The labels are connected in the
following way.

Notation in Ref. 8 m ! A

Our notation myy Va2

Evidently D(my,, iys,) is the main series and D'(x,;)
the supplementary series.

(c) n = 4: In this case we compare our results with
Notation in g k m those of Strom® because he calculates from the
Ref. 7 generators of the Weyl basis, which is given in
. Dixmier,! the generator P, = id,;;. The connection
rn 1 — (25 + 32 1 . ’ o 0 O
Our notation | § — (@ + ) | ma + ™21 | with our notation is given by the following.
Notation of Strom® | m J n [ r q 6
Our notation Mgy | Mg | My | Mg+ 1 | migy | misg + 2| 32— (255 + )2

The representations ;, of Strom correspond to our
Dx(m;,, my;) and m,, to our D%(my, my,). The
representations v, ., with r =4, 1, 3 +-- and } < o,
correspond to our D(my,,ipys;), and those for
r=1,2,3--and 0 < 0 < % to our D(my,, xs,).
The class »,, with —2 < ¢ £ }is our D(x;), and
the remaining part of the series », , for } < ¢ is our
D¥mygy, mg,) for my; = 0.
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We present a self-contained treatment of the technical parts of distribution theory needed in quantum
field theory. The treatment is particularly suited for physicists since an absolute minimum of abstract
functional analysis is used: In fact, only the Baire category theorem is needed. The simple nature of some
proofs depends on extensive use of the expansion of a distribution as a sum of harmonic oscillator wave-
functions. While this Hermite expansion is not new, the fact that it provides elementary proofs of several

theorems does appear to be new.

1. INTRODUCTION AND NOTATION

Schwartz’'s theory of tempered distributions is
basic to the Garding-Wightman axiomatation of
relativistic quantum field theory.!=® Field theory
requires technical results from distribution theory and
not merely the ‘“classical” differential calculus and
Fourier analysis of distributions—in particular, the
kernel (or nuclear) theorem is needed to define the
Wightman functions as distributions in many variables
(Ref. 2, p. 106). The purpose of this article is to present
a proof of the kernel theorem particularly suited for
the physicist—not only is a minimum amount of real
analysis used, but the basic tool is the harmonic
oscillator wavefunctions, a familiar friend to any
physicist.

The approach we use also provides a simple proof
of the regularity theorem and several other resuits
mentioned in Streater and Wightman.? By adding
short sections on the Baire category theorem and on
convergence in D', we are able to provide a complete
treatment of the distribution theory used in Ref. 2.
We have thus used the discovery of simple proofs of
the kernel and regularity theorems to present a general
pedagogic presentation to the reader who wishes to
study axiomatic field theory without an extensive
detour into the functional analysis texts.

Because we will be dealing with several sets of
infinitely many norms and with objects in many-
dimensional real spaces, an extensive set of notational
conventions seems imperative. The letters s and / will
refer to the dimension of the underlying real space.
S(RY and 8 will be used interchangeably for the
functions of rapid decrease in R, The letters m, n,
o, and B will be used to refer to multi-indices, i.e.,
I-tuples of nonnegative integers m = (m,, "+, my).
We adopt the standard notation

m!=my!my!---m!,
iml=my + my + -+ + my,
(m)" =myt- - m;?,

m+l=m+1,---
olal

= a1 . .. a;’
oxt- - - ox™

x* = xalu. . x;!z.

,my + 1),

Du

In one place, we will slightly abuse this notation as
follows: We will have /-tuples m and » and s-tuples o
and f and will write

(m+ D'+ 1P =((m, ) + )" (1.1)

The letters r, s, i, and j will be used for nonnegative
integers. We will use the letters a, b, and ¢ to refer to
multisequences, i.e., ¢ = a, where n runs over N',
that is, all multi-indices of / entries. We will, of course,
use other symbols and, while we will use them
systematically, we will not introduce them at this point.

We will suppose that the reader is familiar with
the basic notions of distribution theory, as pre-
sented, for example, in Ref. 2 (for additional back-
ground, see Refs. 4 and 5 on an elementary level and
6-10 on a more advanced level).

In Sec. 2, we present without proofs the basic
identification of 8 and 8’ with sequence spaces, an
identification which is basic to the simple proofs we
present in Secs. 3 and 4. We return in Sec. 5 to the
proof of the identifications of Sec. 2. After a section
on miscellaneous results which follow from the
sequence approach, we derive the remaining distri-
bution theory needed for (axiomatic) quantum field
theory as consequences of one general result—the
Baire category theorem.

2. THE n-REPRESENTATION

Functions in 8§(R) are in L* and thus have expan-
sions Y a,¢, , where the ¢, are the harmonic oscillator
wavefunctions

$o(x) = mi27Fr(ury Tt (i)ne““z.
dx
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The simple proofs in Secs. 3 and 4 depend on the
characterization of the Hermite coefficients of
functions in S:

Theorem 1: Suppose that fe 8 and

an=f¢xnf&)¢n

Then, for any m

Sla.l (n + )™ = Jal?, < co.

Conversely, if |a|l,, < oo for all m, then  a,$,
converges (in the topology of §) to a function in 8.

This theorem, which we prove in Sec. 5, establishes
an isomorphism between S and a sequence space. We
will call the representation of ¢ € 8, as a sequence a,,
the n-space representation.

Not only do the a, that arise from functions in 8
have a simple description, but they also provide a
simple form for the notion of convergence in 8. § has
convergence defined by an infinite set of norms
Il ll;, specifically the norms

Hf”r.s,co,Z s z “anﬂf”oo’

lal <r
181=s
where

gl = sup |g(x)].

If x is any countably normed space, one says x, — x
if Jx, — x|l — 0 for each fixed k. Equivalently,
convergence can be described by the metric

p(f, ) =2 2" min (1, | f — gl

k

If x is given two sets of norms || [|; and | |;, we
say the sets are equivalent if and only if, for any i,
there isa C and j,, -, j, so that

1A < Clifily, + -+ 1AL

and, for any j, there is a D and i;, -, i, so that
A < DASN, + -+ 11fll)- It is easy to see
equivalent sets of norms provide identical notions of
convergence, open set, etc., and that “equivalent” is
an equivalence relation.

For example, the norms | [,z on 8 are
“equivalent” to the norms

1 Vg0 = 1x*DPf I .
More to the point:

Theorem 2: For fe § define
e = (1 + D™ fa, DR,
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where {a,} are the Hermite coefficients for f. The
norms | |l,, and | [, , .,z are equivalent.

This characterization of convergence in § (also
proven in Sec. 5) allows us to find an n-space repre-
sentation of distributions T € §'. Let us first point out
a useful property of the || |,,.

Definition: A countable family of norms | |, is
called directed if for any finite set ky, - -+, k, there
isakanda Csothat |fl, + -+ I fllx, < Cliflx-

The families {| [, 0.5} and {|| |,.} are directed
but the family {{j |5} is not.

Directed families are very useful because they
provide a simple description of open sets and con-
tinuous functionals. If one looks at the metric p,
it is not hard to see that, for any family of countable
norms, every neighborhood of 0 contains a canonical
neighborhood of the form

| Iy < Avs oo I, < A
If, in addition, the family of norms is directed, every

canonical neighborhood contains a simpler neighbor-
hood

] lxl < 4}

Finally, using the fact that the inverse image of
{z| |z| < 1} under a continuous linear functional is
open, one finds:

Lemma I: A linear map 7:X— C with X a
countably normed space with a directed family of
norms {|| |;} is continuous if and only if 3 C, k such
that

17x[ < C lIxlly-

This fact and the directed nature of the | -|,,
allows us to prove:

Theorem 3. Suppose that Te 8'(R). Let b, = 7($,).
Then }b,| < C(1 + n)™ for some C and m, and
T(f) = Y a,b, if a, is the n-space representative of f.
Conversely, if |b,] < C(1 + n)™, then f— > a,b,
defines a tempered distribution.

Proof: Since Te 8 and | |, is directed, |Tf] <
C If|lu for some m. But [¢,|,. = (1 + n)}” so that
|Tf] < €1 4+ n)}™ < C(1 4+ n)™. To complete the
proof of the first half of the theorem, we use Theorem
1, which tells us > a,¢, converges in 8 to f. For the
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converse, we merely compute the following:

|3 a,b,* (2 la,f* (n + 1]
X [21b,* (n + 17"
S Clflimpa 2 (n + 1
L0 | flimse

so that f— ¥ a,b, is a continuous linear functional
on 8, QED

We remark that, while we have stated the results for
S(R) and §’(R), identical results hold for 8(R’) and
§'(RY). We need only interpret » and m as multi-
indices, and

¢n(x) = ¢n1(xl) vt ¢n,(xz)'

To summarize, we have seen that, in the n-repre-
sentation, § represents just the sequences of fast
falloff and 8’ represents just the sequences of poly-
nomial growth.

3. THE REGULARITY THEOREM

The regularity theorem for tempered distributions
says that any tempered distribution is the derivative
of a continuous function of polynomial growth. The
usual proof (Ref. 6, pp. 239-43) uses the Hahn-Banach
and Reisz-Markov theorems plus a detailed analysis
of tempered measures. It might seem a little strange
that a theorem that never mentions measures needs
measure theory in its proof. In fact, it does not:
Using the n-space realization, we present a scandal-
ously elementary proof of this theorem. This proof is
a distant relative of the proof given by Zerner.!!

The basic idea behind the proof is that we expect
[~ (d%dx?) + x2 + 1] to act as multiplication by
n + 1 in the n space. In fact:

Lemma 2: Let T € 8'(R) have Hermite coefficients
b, = T(¢,). Then 2-™[—(d*dx?*) + x* + 1]"T has
Hermite coefficients (n + 1)"b,, .

Proof:
. d2 . m
2 (—— (—i;E + x° + 1) T($,)

Aot fe]
= (n + DH"T($,).

The second input to the proof is that > a,é, is
“nice” if a, falls off fast enough. This follows from:

Lemma 3: ||$,ll, < C(n + 1) for some C and M
(independent of n).
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Proof: By Theorem 2 and the directed nature of the
I Haws 1flle < CUflla for some Cand M. QED

Remarks: (1) The arithmetic of Sec. 5 actually
shows that we can take M = }. (2) Detailed studies
of the generating function for the ¢, show that
Ipalle ~ Cln 4 1)71= as n — 0012

We are thus ready to prove the regularity theorem.

-Theorem 4: Suppose that T€ 8’. Then 3m and a
continuous bounded function f such that

T

(e

dx? )

Proof: Let b, be the n-space representative of T.
Then |b,| < C(n + 1)* for some k. Let m =k +
M + 2, where M is given in Lemma 3. Let a, =
(n + 1)™™b,,. Then

2.4, gl < 0
by Lemma 3, and so > a,¢, converges in L® norm
(and thus in 8") to a bounded continuous function,
say 2"f. By Lemma 2,

2 m
T (—-d—+x2+1)f. QED
dx®
It is now straightforward to obtain the alternate
form T = D*F, where F is of polynomial growth.
By using multi-indices, we can prove the regularity
theorem for S(RY).

4. THE KERNEL THEOREM

Most proofs of the kernel theorem for § rely
heavily on the theory of “nuclear’ spaces (see Ref. 10,
p- 530 or Ref. 13, pp. 73-84). We present here a proof
of the kernel theorem on 8 which relies only on the
n-space representation. As we will discuss in Sec. 8,
this is a relative of existing proofs for D.

In its “normal” form, the kernel theorem is a
statement about separately continuous bilinear func-
tionals. We divide it into two parts: that any separately
continuous functional is jointly continuous and that
jointly continuous functionals have the requisite form.
In this section, we consider only the latter part. This
part is the crucial half of the kernel theorem—in
particular, the kernel theorem fails to hold for, say,
L2(R") because the analog of this half breaks down.
We will prove the other part of the kernel theorem in
Sec. 7.

Let us first establish the form we will need for joint
continuity.
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Definition: A bilinear map B(x,y) from pairs
xe X, yeY into C is jointly continuous if it is
continuous as a map of X x Y into C, i.e., if and
only if for any e, x,, and y, there are neighborhoods
N of xo and M of y, such that x € N, y € M implies

|B(X,}’) - B(x01y0)| < €.

Lemma 4: Let X and Y be two countably normed
spaces with directed families of norms {|| [,} and
{Il II;}. Let B be a bilinear form on X x Y. Then the
following are equivalent:

(a) B is jointly continuous.

(b) B is jointly continuous at (0, 0).

(c) If x,—»0, y,—0, then B(x,, y,) —0.

(d) For some r, 4, and C

1B(x, pI < Clixll, Iyla-

Proof: (a)=- (b) = (d) = (a) and (c) = (b) can be
proven by “standard’ methods such as those used for
linear functionals in Banach space. We only remark
that (c) = (b) depends essentially on the fact that
we are in metric spaces where the open sets are
describable in terms of sequential convergence (for
example, the analogous result is false for D). (b) =~ (d)
depends on the fact that the norms are directed.

QED

Theorem 5: Let B be jointly continuous bilinear
functional on 8('RY) x S(IR?). Then there is a unique
distribution T in 8'(R'*$) so that

B(f,g) =T(f®y),
(f@g)x, y) = f(x)gy).
Proof: Let C, m, and f be chosen such that
[B(f,g)l S Cliflnlighs.

where

4.1)
Suppose that

t('ﬂ;a)=B(¢n:¢a)’ nGNZ, a € N

Since B is jointly continuous and f= 3 a,¢, and
g = > b,$,, we have that B(f,g) = t,.,a,b,. On
the other hand, by (4.1),
ltna < Nullm I8l = (0 + D" + 1
= [(n, @) + 1]

Thus the sequence 7,, ,, defines an element Y #(, P (.00
of 8'(Rsth),
T(h) = 2 tmzc(n,a) ’

h = 2 c(n.a)qs(n.a) ,
Since f ® g has the Hermite coefficients a,b, , we have
that

where

T(f® g) = 2 t, a,b, = B(£, g).

n.a
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This proves existence. Since T is completely deter-
mined by the T(é, ) (its Hermite coefficients) and
we must have

T(¢(n,a)) = T(¢n @ ¢a) = B(¢n’ ¢a) = lngs

T is unique. QED
Theorem 6: Let M be a jointly continuous multi-
linear functional on S$(Ru) x -+ x §(R¥). Then
there is a unique distribution T in 8'(Ru*""+ir) such
that
M(fi, ) =T(/L® - ®f)

Proof: The proof is analogous to Theorem 5.

5. PROOFS OF THEOREMS 1 AND 2

We prove Theorems 1 and 2 through a sequence of
lemmas.

Lemma 5: Suppose that fe 8(R) and a, = (f, ¢,).
Then
2lalPn+ 1" < o
for all m.

Proof: Since fe D[(p*+ x4+ 1)"] for all m,
Sl (n + )™ = 27™(f, (p® + x* + 1)"f) < <o for
all m.

To complete the proofs of Theorems 1 and 2, we
must first establish the equivalence of the | |, .5
and ||. ||,,. We do this by establishing the equivalence
of each of these families of norms with several families
of intermediate norms. First we show the | |

are equivalent to the norms "
, 1 Ngp.2 = 1xDPf 1y,
with
IfIE = f ()1 dx.
Lemma 6:
170 € 720 f o + 1% 1),
so that
flage < 70 apco + 1f Nasngoo)-
Proof:
11 = [ a4 0+ 11
2 2 ® _dx
<11+ %) 1f] u@f_w e
< 7l + Il QED

To bound the || ||,,’s by the || ||; norms, the above
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trick does not work. However, the Fourier transform
“reverses’’ the ordering of L? spaces, explicitly:

Lenima 7: Let

F) = @m e dx.
Then, for f€ S8,

Ul = 170es 1o < Qa2 071,

Proof: The L? inequality is, of course, well known
to any physicist (see, e.g., Ref. 14, pp. 355-62). The
L inequality is trivial. QED

Lemma 8:
171, < =317 1 + 127 1)
so that (by Lemma 7)

1l < 27501 £l + 1011

and
o < 250 Naps + 1 lepins + o 1S et g,
Proof: As in the proof of Lemma 6,

1= dptct + 2170008 + 27
<[ [t + pz)_l]*( [arie + |pf|2)%

< 7171 + 167 1. QED

N.B.: (1) Lemma 8 is known as a Sobolev inequality
in the mathematics literature. (2) Thus,

u¢nuoo S u¢n|l2 + “PSbnuz
=1+ 27t + (n + DY
<3+ 1,

as stated in Sec. 2.

We thus see that the || ||,z and || [l,.z.2 families
are equivalent. Finally:

Lemma 9: The | ||, and | [l, norms are
equivalent.

Proof: All we need prove is that the || |, and the
| g2 norms are equivalent because we already
have proven the || ll, 52 and || ;5.5 equivalent.
Let 5t and # be the usual creation and annihilation
operators. Since 7, ' are linear combinations of x, p,
and vice versa, and since any polynomial in x’s and
p’s is equal to a polynomial with only x*DP terms, the
Il 5.2 nOrms are equivalent to the norms | (7%)*f|ls,
where (#¥)* is a generic symbol for a monomial of
degree k in 7 and 7'. Since || f|,, = [(nD)™f Iy, the
I II. are a subset of the [|(*)* - ||, norms. But it is
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easy to see that ||(n*)*f |, < k) | f],, with m = k

(crude estimate) so that the | ||,, norms are equiva-

lent to the | (5*)" - ||5. This completes the proof.
QED

To complete this section, we need only show that
lal,, < co implies that } a,é, converges in 8. This
is a consequence of the equivalence of the norms and
the fact that § is complete. (For a proof of this last
fact, see Ref. 10, pp. 92-94.)

6. OTHER THEOREMS IN THE
n-REPRESENTATION

In this section we point out several theorems whose
proofs are also simple in the n-representation.

Theorem 7: § is separable; i.e., it has a countable
dense set. '

Proof: Since D, ya,$, converges to f in 8 if
a, = (¢,,f), the finite linear combinations of the
¢, with rational coefficients are dense in 8§ and are
countable. QED

Theorem 8: 8 is dense in 8’ in the weak topology
on §'.

Proof: If b, = T(¢,), D nen butp, — T in the weak
topology on §8’. But >, _b,é, € 8. QED

The next result is a little surprising:

Theorem 9'*: For any /, 8 and 8 are isomorphic
as topological vector spaces. Thus, for any s and /,
S(R? and S(IR#) are isomorphic.

Proof: We prove the result for / = 2. The proof is
similar for / > 2. Consider the map u of N% onto N
by u(0,0) =0, u(1,0) =1, u(©0,1) =2; u2,0) =
3,---;1ie.,

u(r,s) =3¢ +s)r+s+ 1)+

We map 8% onto 8% by (F(@),; = duy.s-
Because u(r, s) obeys the relations

r<Lu(r,s), sLu,s),
u(r,s) + 1 < (r + D*s + 1),

we immediately have

S+ D" al < El(r + 1" + D" [F(@), P

n=1 7.8=

and

3+ D™(s + D™ |Fa),,f* < Zl(n + 1™ a,

r.s=1
Thus the norms a — | F(@)| m,,m, and the | |,, are
equivalent. QED
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This identity of 8§ and 8 is not so useful as one
might think at first. It says that we only have to prove
theorems for 8V if the theorem only refers to the
“internal” structure of §. However, theorems like the
regularity and kernel theorem refer to “‘external”
structure, i.e., the realization of some distributions as
functions and the map of 8§ x §!2 jnto 8th+ia),

7. THE BAIRE CATEGORY THEOREM
AND APPLICATIONS

There are four results mentioned in Ref. 2 which
we have not yet proven:

(1) The completeness of §'.

(2) The nature of bounded sets in 8 (equivalence of
weak and norm boundedness).

(3) The fact that separate continuity implies joint
continuity for bilinear forms.

(4) The uniform convergence on bounded sets of
ordinary distributions.

One is able to prove (1)}-(3) from one abstract
principle (Theorem 10); we will also be able to prove
a weak form of (4) sufficient for the application in
Ref. 2. The material in this section is rather standard.
We only present it here because it is usually difficult
to cull only the results needed for Ref. 2 from the
texts.

Theorem 10 (Baire Category Theorem): Let X be a
complete metric space and suppose that

X= UAi-

=1
Then some i, 4; has a nonempty interior.

Proof: The argument is quite simple. See Ref. 16.
As a simple consequence:

Theorem 11 (Principle of Uniform Boundedness): Let
X be a countably normed space with || |, a directed
sequence of norms. Let be a set in X, the dual of X.
If{F(f) | F € 5} is bounded for each f € X, then there
is a C and an r so that, for all fand all Fe &,

IFOO L CUSI,

Proof: Suppose that Sy = {fe€ X||F(f)| < N for
all F € }. Then each Sy is closed and, by the hypothe-
sis of the theorem, X = (J Sy. Thus, for some N, Sy
has a nonempty interior. Therefore there exist an N,
7, fo, and e such that ||g — foll, < € implies g € Sy.
Suppose that a = sup |F(fy)l. Then |A], <€ and
F e J imply that

[F(h)| < 1F(fo + W + [F(f)l < N + a.
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Therefore,
[F(h)| < [(N + a)/e] ||hl, forall hand FeF.
QED

Corollary 1: 8" is weakly sequentially complete.

Proof: Let T, be a weak Cauchy sequence of tem-
pered distributions; i.e., for each fe 8, let T,,(f) be a
Cauchy sequence of numbers. Since this is Cauchy,
lim T,,(f) = 7(f) as n — oo exists. T defined this way
is linear. We must only show it is continuous. But
since lim T,(f) as n— oo exists, {T,(f)}p=1,5,.. 18
bounded. Thus, by Theorem 11, for some C and m,
1T < Clifllm. Therefore, [T(f)} < C|if|},,, and
so T is continuous.

Corollary 2: Let B be a separately continuous
bilinear form on 8(R%) x §(R'). Then it is jointly
continuous.

Proof: Let f, — 0,g, — O,where f, € 8%, g € 8§,
We need only show that B(f,, g,) — 0. Let F,(g) =
B(f,,g). By continuity for fixed f, F, e 8%, By
continuity for fixed g, F,(g) — 0 for each g, and thus
{F,(g)} is bounded for each g. Thus, for some C and
m, |F,(g)l < Clgl, for all n. Since g, — 0 in 8",
gl —O. QED

Corollary 3: Let M be a separately continuous r-
linear form on 8(RY4) x - -+ x §(RY). Then it is
jointly continuous.

Proof: We use induction on r. r =2 has been
proved in Corollary 2. Assuming the results for
r=R, we let M(fO,---, fF) be given, and let
[ be sequences in 8 with f{ —0. For each
g€ 8t M(—, —,--+,g)is jointly continuous as
an R-linear form by the induction hypothesis, and
thus

ML, B ) >0
Proceeding as in the proof of Corollary 2, we see that
M(f‘”, RN ,f(RH)) -0

so that M is jointly continuous. QED
We can also discuss bounded sets by using Theorems
10 and 11.

Theorem 12: For a set A < §, the following are
equivalent:

(a) For any neighborhood N of 0, there is a real
number A with 44 < N.

(b) For each m, {||f,. | f€ A} is bounded.

(c) For each Fe ', {F(f)|fe A} is bounded.
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Proof: (a)<=(b) is quite simple, as is (b) = (c).
To prove (c) = (b), we proceed as follows: For each
g € L*(R9) and fixed (%)™,

([ortran = [atatrnfea

is bounded. By Theorem 11 with X = L%, the
{l(n*)"f |l | f € A} are bounded. Thus (b) follows.
QED

Definition: A set A < 8 obeying the conditions in
Theorem 12 is called bounded.

Theorem 13: for a set B < §, the following are
equivalent:

(a) For any fe 8, {F(f) | F e B} is bounded.

(b) There is a C and an m such that, for all F€ B,
FESFPI L Clflm-

(¢) For any bounded set A< 8, {F(f)| Fe B,
f€ A} is bounded.

Proof: (c) = (a) is easy. (a)=- (b) is Theorem 12.
(b) = (c) is proven as follows: Given (b) and a
bounded set A, sup {|fll,,f€ 4} =k < . Thus,
for any fe A, Fe B, |F(f)| < Ck. QED

Definition: A set B < 8’ obeying the conditions in
Theorem 13 is called bounded.

Theorem 4. A sequence f, — fin the | |-topology
on 8 if and only if, for any bounded set B < &,
F(f,) — F(f) uniformly for Fe B.

Proof: One direction of the proof (only if) is a
simple consequence of Theorem 13(b). The other
direction is an interesting exercise; since this theorem
is purely motivational, we do not provide a complete
proof.

Theorem 14 suggests the following definition:

Definition: A sequence of distribution F, is said to
converge strongly to Fif and only if, for any bounded
subset 4 = 8, F,(f) — F(f) uniformly for f'e 4.

The analog for § of statement (4) at the beginning
of the section is the following theorem, which we will
not prove.

Theorem 15: A sequence of distributions F, con-
verges strongly to Fif and only if it converges weakly.

Remark: In Theorem 14, we could replace “se-
quence” by the more general notion of net necessary
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for the complete description of a topology by con-
vergence. However, the word sequence is essential in
Theorem 15 and cannot be replaced by net.

Theorem 15 is implied by two other statements.

Theorem 16: Suppose that F, — F weakly with
F,, Fe§8'. Let A< § be a compact subset. Then
F,(f) — F(f) uniformly for f e A.

Theorem 17:1f A = 8isbounded, then 4 is compact.

We will not prove Theorem 17, but Theorem 16 will
follow from results in Sec. 8.

8. A THEOREM FOR ORDINARY
DISTRIBUTIONS
In Ref. 2, Wightman and Streater state and use the
analog of Theorem 15 for D. Actually, one only needs
a weak analog of Theorem 16 in his application, and
we will prove this weak form in this section and show
that it suffices in the application.

Lemma 10: Let X be a countably normed space and
suppose that F,, F e X', the dual of X. Suppose that
F,(x) — F(x) for each x in X. Let A be a compact
subset of X. Then F,(x)— F(x) uniformly for
x € A; that is, given €, we can find N such thatn > N
and x € 4 implies |F,(x) — F(x)| < e.

Proof: Let | |, be a directed sequence of norms
for X. By Theorem 11, there is a C and an r such that
IF,()l < Clixfl, and |F(x)| < Cx],. For each
x€Ad,let B, ={y|lx — yll, < ¢/3C}. The {B,|x¢€
A} cover 4 and so, by compactness, we find x;,- - -,
X,, such that Ui, B, = A. Since F,(x;) — F(x;), we
can find N such that n > Nimplies |F,(x;) — F(x;)| <
ef3 fori=1,---,m. Let xe A. Find i such that
x € B, ie., |x — x, < ¢/3G. Then, for any n,

|Fo(x) — Fo(x;)l < €/3 and |F(x) — F(x;)| < €/3.

Thus, if # > N,

|F(x) = F, () < |F(x) = F(x;)| + |F(x;) — F,(x)|
+ F,(x) — Fu(0)] < e

This proves the result since ¢ is arbitrary.

Remarks: (1) The proof of Lemma 10 is really a
classical equicontinuity argument. (2) Thus Theorem
16 is proven.

Theorem 18: Let A = D(O) be a family of functions
such that
(i) 4 is compact in D(O).
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(ii) For some fixed compact C < O, fe A implies
supp f < C. Let F, , F € D(9)" and let F,(g) — F,(g)
for all g € D. Then F,(f) — F(f) uniformly for f € 4.

Remarks: (1) 1t is not difficult to prove that (i)
implies (ii), but in the application (ii) can be directly
verified. (2) One can actually show that any closed
bounded set in D obeys (i) and (ii), and so the analog
of Theorem 17 follows.

Proof of 18: Let D,(O) be the subspace of D(O) of
functions with support in C. The topology of D(0)
restricted to D,(0) is described by the norms || f|l, =
| D*f| & » so that D,(O) is a countably normed space.
Since the F, and F are continuous on D(9), they are
continuous on D,(0), and thus we are in the condi-
tions of Lemma 10. QED

The application in Ref. 2 of the uniform conver-
gence idea is to the case (Ref. 2, p. 83) 4 = {f_,}
where e D(0) and x lies in some small compact, so
small that we can assume (ii) without thought. To
verify (i) is easy: The map x — f_ is continuous, and
so the image of a compact set of x is compact in
D(O).

9. RELATION TO OTHER APPROACHES

The crucial element in the proofs of Secs. 5 and 6
is the realization of 8§ as a sequence space and the
realization of topology in terms of the norms || ||,,.
The systematic use of Hermite expansions goes back
at least as far as Weiner.}” Our realization of § is
certainly not new; there is a short discussion of it in
Schwartz’s book (Ref. 6, pp. 271-83). A set of norms
closely related to the || |,, is implicit in Schwartz and
a similar set of norms is discussed by Kristensen
et al.»® The proof of the kernel theorem in their norms

lall?.e = Z (Inl + " e,|*

is not as direct as in the || |,, since the multiplicative
property (1.1) avoids messy arithmetic. The only
“new”’ result which we can possibly claim is the fact
that the n-space realization of 8§ provides a simple
proof of the nuclear theorem—but this proof is
clearly related to the various proofs of the nuclear
theorem for D which depend on- Fourier series
(Ref. 13, pp. 11-18; Refs. 19 and 20); in fact, our
proof must be the “‘analogous proof for 8 alluded
to by Gel’fand and Vilenkin (Ref. 13, p. 19). However,
for the student of Ref. 2 faced with the statement
““there does not seem to be an analogous elementary
proof available for 8 (p. 43), it seems useful to have
the details spelled out.
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It is interesting to notice the close connection with
Bargmann’s beautiful and complete treatment of
tempered distributions.?® He realizes S as a family of
entire functions and finds that 8’ can also be so
realized. Up to the factors of \/n! the Taylor coeffi-
cients for his entire functions are just the Hermite
coefficients of the elements of § and 8. His Hilbert
spaces F, are just the multisequences with |ja|, < oo
(although his inner product is not quite that given by
| i, and he has r run over the all reals). Bargmann’s
results that 8 is “essentially” i®, F, and §' is
essentially J52,, 5 (Ref. 21, p. 4) is evident from our
Theorems 1 and 3. Bargmann’s proofs of the regularity
and kernel theorems (Ref. 20, pp. 70 and 68) are more
or less our proofs in a complex function theoretic
guise. In one sense, then, our simple proof is based on
the observation that for these two theorems Bargmann’s
proofs do not require the elaborate constructions he
uses. However, the treatment of the wide array of
problems he considers uses analytic function theory
(particularly variants of the maximum modulus
principle) in an essential way. [Perhaps the relation
of our approach to Bargmann’s can be illustrated by
remarking that it is identical to the relation of
Schwinger’s creation operator treatment of angular
momentum,?* to Bargmann’s approach® for SU(2).]

To the reader who wishes to use this note as a
jumping off point for a more detailed study of
tempered distributions, we can recommend Barg-
mann’s approach most emphatically. Alternately,
sequence spaces have been studied extensively by
Kothe.25.26

We should also mention to the student of axiomatic
field theory that, while he can avoid delving into the
theory of nuclear spaces in studying Ref. 2, Jaffe’s
important work on “strictly localizable fields™ %
introduces a large class of test function spaces for
which the kernel theorem is needed and for which the
Hermite expansion method does not work.
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INTRODUCTION

This paper originates from an attempt to under-
stand the source of the difficulties which one faces in
constructing generators of ‘“‘canonical” local trans-
formations of relativistic fields. We shall be mainly
concerned with gauge transformation of the second
type, but most of what will be said goes over almost
verbatim to, e.g., “internal symmetry’’ groups.

The fact that such generators cannot be con-
structed in otherwise simple cases has been known
for some time,! although domain problems plague
the nonexistence proofs (these generators, when they
exist, are expected to be unbounded operators). We
shall discuss the existence of a continuous group of
unitary operators that induce the group of trans-
formations considered, a problem equivalent to the
previous one, via Stone’s theorem. We shall consider
only some representations of the canonical fields,
selected for having a structure particularly well suited
for our purposes, and probably of not much physical
interest,2 and we shall show that in most of them
(in a sense to be made precise later) such a weakly

continuous group of unitary operators cannot be
found.

Also, while the nonexistence of the generators of
gauge groups (equal-time currents) as bona fide
operators may cast some doubts on their formal
manipulations, meaningful results can be obtained
by giving them a meaning as bilinear forms.! Our
results have no bearing on such an approach.

The content of the paper is as follows: In Sec. 1 we
pose the problem and fix our notation, and actually
generalize the previous setup in a rather natural way.
Section 2 will be devoted to the solution of the
generalized problem. In Sec. 3 the case of relativistic
free fields will be considered, in the light of the
preceding results, and the corresponding statement
about local ““charges” will be explicated.

1. THE PROBLEM
A. Canonical Anticommutation Relations

We shall start posing our problem in the case of
canonical anticommutation relations (CAR’s).
Let {a;,a}}, i=1,-+-,n, be a countable set of
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operators on a Hilbert space X, satisfying the relations

(1
where A* is the adjoint of 4, I the identity in £(3€),
and 4,; is the Kronecker deita.

Let £ be the smallest (concrete) C*-algebra con-
taining all a; and a}'; we shall denote by # the algebra
A considered as an abstract algebra. If {1}, n = 1,
2,.--, is a sequence of real numbers, the mapping
74 defined for each 6 by

a;ay + afa; = 10;;, aa;+ aa; =0,

Lin0

—ZAn0
a, — a,e*" tha

@

* *
ay—are

defines an automorphism of 4 and therefore of .

We are interested in the following question: In which
representation 7 of 4 can one find a (strongly) con-
tinuous group of unitary operators U such that, for
alla,,

e*n(a,) = Ugm(a,)Uz", V6,
where m(a,) is the representative of a,,.

One could alternatively consider the free Fermi

system® over? £3(R3, u) generated by

L2(R3) s f—a(f), a*(f).
[It is then part of the definition that f — a(f) is linear
and affine and that a(f)a*(g) + a*(gla(f) = (g.f),
where (-, -) denotes scalar product in £3(IR?%)].

The automorphisms of interest would then be the
ones induced by a one-parameter continuous group
of unitary operators on £2(R?%), with generator T'
having totally discrete spectrum.

This is actually the setup with an interpretation in
“current algebra” terminology; the correspondence
with the previous discrete scheme is given by a, <>
a(g,), where g, € £2(R3) are the eigenfunctions of I
and I'g, = 1,8,

3)

B. Tensor Product Representations of A

We shall only consider a special type of repre-
sentations of the algebra 4, the “tensor-product”
ones,® whose defining properties will be outlined
presently. This will enable us to discuss the existence
of “local generators” in the simple but instructive
case of free fields; a similar analysis can presumably
be performed for other representations, such as the
exponential ones,® so as to accommodate also cases of
interacting fields; this is, however, beyond the scope
of the present paper. Let the ,,i = 1,2, -+, be 2-
dimensional Hilbert spaces and Q; = («,, ;) be a
vector in J¢; of norm one (J«;|2 + {6,{2 = 1).

Consider, in the Cartesian product J];-;....%;
(the set of sequences {£;}, & €3,), the subset X
defined by: &, # €, only for a finite number of indices.
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On X a (strictly positive) bilinear form is defined by
{&3 () =i;]i-l;--(§i’ n:)s

where (£;, %;) is the scalar product in J¢; and by
convention

MMa=1 if 4=1, Vi
fo=l, e

The completion of X in the norm defined by (- 1) is
called tensor product of the J¢,;’s relative to the vector
{Q,} and is denoted by
Q3
Jen = ® Jei.

Let 4,, 4¥, and N, be the operators on X, defined by
(in matrix notation) a; <> (33), af <> (9), and
N; <> (§}); then the operators defined on ¥, by

ai{ég’} = {ei”lel’ Tt eiﬂNi_lsi—la ﬁifi? Si—{-la v '}9

ai{'S;’} = {e-HﬂNlél’ Y eiﬂNi—lé'i_u aré;, St }
satisfy

aay + afa; = 6y, aa; +a;a;,=0
and provide therefore a representation of the CAR on
®® ¥,, called the tensor product representation
relative to Q = {Q;} = (Q;, Q, - - ).
For different choices of {€;} one has, in general,

different representations; necessary and sufficient

conditions for their equivalence are known,” and we
could formulate our problem in that language.

2. SOLUTION OF THE GENERALIZED
PROBLEM

A. Unitary Operators
We shall now determine conditions for the existence
of unitary operators with the properties
Upar Ut = e, k=1,"--, n.

Suppose that Uy exists. Let ¥} , be defined on 3¢, by

o [+4
v, ﬂ=<.k)
9,k (ﬂk ezi.wﬂk
With ey = ®Y, ¥,, one can show that

K = ¥n ®Jeﬂl’ Q= {‘Qka k> N} (4)
Let V™) be defined by
V(N){Ek} ={&} &= Vosbes
for k<N, & =&, k>N. (5
Then U;'Vg™ is of the form I ® W relative to the
decomposition (4), and one has

lUOQ’ Q)I S |(I/0NQA7’ QJV)I
N
= [Tl = 2x,(1 — x,)(1 — cos 1,0)],

k=1
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where Qy = {Q,, k < N}and x;, = |o |2 = 1 — |B,/3,
0 < x;, < 1. Similarly, let & = {&,} € X be such that
3 ky > 0 for which &, = Q, if k > k, (vectors of this
form are dense in J& by construction).

Arguing as before, one proves

(6

It follows that a necessary and sufficient condition
for the existence of U, in the given representation is

> xi(1 — x)(1 — cos 64,) < 0. N

Indeed, if (6) were not satisfied, one would have
(&, Uyé) = 0 for £ in a dense subset of ¥, which is
impossible if U, is unitary (and therefore bounded).
On the other hand, if (6) is satisfied, one can easily
prove that U, exists and is, in fact, the strong limit of
Vév, as defined in Eq. (5), when N — co.

Clearly, inequality (7) is satisfied for all 6 and all
choices of {4} if

> x(1 — x) < o0
k

(Uot, &)l < H [l — 2501 — x)(1 — cos 4H)].

®

Tensor product representations relative to vectors 2
for which (8) is satisfied are called discrete ifi the
terminology of Ref. 8; in such representations the
automorphisms defined by (2) are always implemented
by a unitary operator, and, in fact, U, is strongly
continuous in 6. We shall therefore concentrate on the
problem of the existence of the unitary operator U,
in representations which are not discrete. The follow-
ing result is easily established.

Proposition 1: If the (tensor product) representation
is not discrete and if {4;} has a finite number of limit
points, among which there is neither 0 nor oo, then
(7) can be satisfied for at most one value of 6 in the

open interval 0-27.

The proof follows 1mmed1ately from the followmg
remark: If A, -+, A, are the limit points of {4},
let I, p=1,---,s, be defined by

rPikeZ| | — Al < ¢,
where Z are the integers and 2e is chosen smaller than

inf [A; — Ayl
(i.9)
i#5
Then for at least one value of p, 1 < p <5, one has
> xp(l = xz) = o0,
kelyp
By similar arguments, it is easily established that if
{2} does not have 0 and oo as limit points and the
representation is not a discrete one, one can find a
neighborhood N, of 6 = 0 such that U, does not
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exist for 6 € Ny, 6 3£ 0. We now consider the general
case in which {4,} can have any limit point [e.g.,
A =k, in which case (2) could be interpreted as
translations in a discrete space, see Ref. 9].

Given the representation and the sequence {4,}, let
N be the set of values of 0 for which U, exists. By
Schwartz’s inequality it is easily established that
N is closed over the field of integers Z, i.e.,

peN, yeN=>mp+npeN, Vmn (9
One proves in addition that if 6, , 6, € N,
F(6, + 0,) < {[F(O)1F + [FO1)%,  (10)

where F(6) = 3 x,(1 — x)(1 — cos 84,). From (9)
and (10) one sees the following.

Remark 1. If F(6) is uniformly bounded on an open
interval of the real line, then it is uniformly bounded
on every bounded interval.

We shall now prove the following

Proposition 2: If the (tensor product) representation
is not discrete, U, cannot exist for all 6 € N’ if N is an
open set with Lebesque measure # 0.

It will be sufficient to prove this proposition for an
open interval (a, b); due to the group structure of
Us (U, Uy, = Up,4,), one can take a = 0. Consider
the (increasing) sequence of positive functlons Fy
defined by

FN (6)v= gxk(l — x,)(1 — cos A,0). (11)

For each N, FY is continuous and bounded, and
therefore measurable on any Borel set. Assume that
FN(6) converges [to F(6)] for all 6 in (0, c). [Since
FN*Y0) > FN(6), FN(6) converges to F(6), for all 6
for which F(0) exists.] We want to prove that this
leads to a contradiction.

By Osgood’s theorem,® F(6) is then continuous on
a residual set,!* since it is the pointwise limit of a
sequence of continuous functions. Therefore, one can
find 0 <a < b<c such that F(6) is uniformly
bounded for a < 0 < b. But then, by Remark 1,
it is uniformly bounded on any bounded interval
@,b).

Consider now

' b
Go» = f FN(6)af

N
=kzlxk(1 — x)[b — a — k™*(sin 4,b — sin A,a)].
(12)
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Since FY(6) is uniformly bounded for all N, including
N = o, and F¥(6) converges pointwise to F(6), it
follows that the convergence is uniform on every
bounded open interval and therefore that

b
GV ——> G = f F(6)a.
From (12) one can see, however, that if {4} does not
have 0 as a limit point, G does not converge for
any (a, ) when N — oo [since 1 — 23" sin 4, > d(e)

lf }’k > G].
We conclude therefore the following.

Proposition 3: If the representation is not discrete
and if {4,} does not have zero as limit point, the
operator U, cannot exist for all 6 in N, if N’ is an
open set of Lebesque measure 5 0.

It should be remarked that, under the assumptions
of Proposition 3, the set of 6’s for which U, exists
could be dense in the real line, as the following simple
example shows.

Assume that 4, =k and x,(1 —x,) =k™10,,,
3. x,(1 — x,) = co. If /27 is rational, one has

> x,(1 = x,)(1 — cos On) < o,

since only a finite number of terms in the sum are
nonzero. Therefore, U, exists for all 6’s for which
6/27 is rational. In fact, given a countable set %, in
0-27, one can show that there exists a (nondiscrete)
representation in which U, exists for all 6 € Z,.

On the other hand, if

27 < o,
k

U, exists for all 0’s in all tensor product representa-
tions; this is, in fact, a particular case of a result
which will be established later.

Finally, combining (9), (10), and Osgood’s theorem,
one has

Proposition 4: If U, exists for a set of Lebesque
measure different from zero, then U, is (strongly)
continuous in 6 on every open interval, and in
particular on any neighborhood of the origin, and,
therefore, by Stone’s theorem, there exists a self-
adjoint operator I' such that U, = € (indeed, 4,
are its eigenvalues).

B. Tensor Product Representations of CCR’s

All the results outlined so far hold also for the
tensor product representations of canonical commuta-
tion relations. These are defined much in the same way
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as for the CAR’s, but now the J¢; are infinite-dimen-
sional (separable) Hilbert spaces; d; and a¥ satisfy on
JC, the relations
[di’ aAz*] = 19
and g, and a} are defined by
a?{£17“',5i,'.'}={§15".’éi6is'.'}s

#
a; = a;or af,

[dia di] =0,

on
{Q;}

J€=®J€i, Q,EJ@,

The mapping we are interested in is again
i}.kﬂ' (2/)
One can also here reformulate the problem in terms
of a free Bose system® over 6(R?), where & is some
subset of £2(R3). The situation is, however, more
comp’licated here, as compared to the Fermi system,
since there is no “‘canonical’’ candidate for &(R?%) and,
if one chooses a particular basis {g;}, g; € §, ¥ i, and
the correspondence

a, — ae

a(g;) —~ a;, a*(g)— af,
then the results may depend on the basis chosen.
We shall set aside this problem for the time being
and concentrate on the discrete formulation.
A necessary and sufficient condition for the exist-
ence of U is found as in the case of the CAR’s and is

2 BB —cos(B,,~0,)]< o, (7)
n,4,3
where 0,,, = k0, and B = |ak|2, 3. 8r =1, Vn,
and the «f are defined by

Qn = ;aﬁ ?N a;anéz = kﬂi, I'Slyc,l = 1.

(The last equations define £, modulo an inessential
phase factor.)
A sufficient condition for the validity of (7') is
2 Bufi < .
57
The (product) representations for which (8") is satis-
fied are called discrete in the terminology of Ref. 8;
indeed, (8') is equivalent to

A =gy <

(89

(8"

for a (unique, modulo changments in a finite number
of points) choice of the function k.

The equivalence of (8") and (8") is easily established
and will not be proven here. In a discrete representa-
tion, for every value of 6 € R? there exists a unitary
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operator Uy which induces the automorphism defined
by (2'), and, in fact, the (group of) Uy’s is strongly
continuous in 6.

We shall henceforth assume that (8’) is not satisfied.
Let

Ven = Zﬁ:: I;z+§’ ' ;75.71 =1, Vn
n §

Let o> (n, &), n=1,2,--+-and €=1,2,--- be
an enumeration of Z+ x Z*; and let

pa = Ely,
Then (7’) takes the form

xaz = 7§.n .

dx(I —cosp) < 0, Dx,=00. (7
a=1

This is very similar to (7), however, since {p,} can
have oo as a limit point even if {1,} does not, the
analog of Proposition |1 does not hold here.}? One
has the analog of Proposition 2 and 3, and therefore:

Proposition 3': If a product representation of the
CCR’s is not discrete and if the sequence {4,} does not
have zero as limit point, an operator U, inducing (2')
cannot exist for all 6 € N, if N is an open set of
Lebesque measure # 0. As in the case of the CAR’s,
if 3 x,(1 — cos p,8) < o, 8 €N, N’ an open set in
R1, then (Q, UyQ) is continuous in 6 in any neighbor-
hood of the origin. Also (&, U,yé) is continuous, where
&= {&}, & # Q, only for a finite number of k’s.
As the set of such & is dense in ® ¥, and U, is
unitary, we have the following.

Proposition 4': If (7') is satisfied for all 6 € o7, o
an open interval of R!, then the U, form a strongly
continuous group of unitary operators, and a self-
adjoint operator I exists, such that U, = €.

C. Extensions to Other Representations of the
CAR’s and CCR’s

The following results are easily established, and
extend slightly the representations of the CAR’s and
of the CCR’s for which 7, defined by (2) [resp. (2)]
can be induced by a group of unitary operators.

Proposition 5: If the product representations studied
in Secs. 2(A) and 2(B) are subrepresentations of a
representation 7 acting on a Hilbert space J€ and if
the hypotheses of Propositions 3 and 3’ are satisfied,
then one cannot find a continuous group of unitary
operators U, on J€ such that

Upm(A)Uy" = m(ro(A)).

Indeed, let 7, be a subrepresentation of =, and let the
hypotheses of Propositions 3 and 3’ be satisfied by
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7y . Assume that for all § € N°, N° a neighborhood of
the origin, one can find U, (on J€) such that

Uym(@)Uy™ = m(a)e®™:

We will prove that this leads to a contradiction.

Since , is a subrepresentation of =, there exist a
projection P € w(#)" [the commutant of m(#)] such
that

K=Kk, KX =PR =)= 77'(‘fe)lPJC-

But then one can find operators U,; from ¥; to X,
Ul < 1, such that

7{(ro(ANDU;; = Usm(A),

Since m(4) is
lel < 1.

If U(f) is strongly continuous in 0, also ¢(f) is
continuous; but c() takes the value 1 at 6 = 0.
Therefore, one can find a neighborhood N of the
origin such that ¢(0) > }, 6 e N,

[t follows from (13) that the operators ¥V, defined,
for 6N, by U, (0) = ct(0)V, induce the auto-
morphism 7, in the representation m;; but this is
excluded by Propositions 3 and 3'.

UnUsi € m(#). (13)

irreducible, U, U}, = c(f) € R,

D. Further Extensions

We shall need an extension of the previous results
to the case of tensor product representations (of the
CAR’s or of the CCR’s) which are constructed as in
Secs.2(A)and 2(B),but with ““a finite number of degrees
of freedom” in each space J¢,. More precisely, taking,
e.g., the case of CCR’s, the representation is now
defined on

Q
by operators a;, af, b;, and b} defined by
adé;} ={&, -

where d;, - - -, bF are operators on J¢; satisfying

-, 4,8, ), etc.,
[4;, 4¥] = [b;, b¥]1 =1, all other commutators = 0.
The operators a;, - - -, b¥ thus satisfy
[ai, a,*] = [bi’ b]*] = 61’]‘;
all other commutators vanish. (14)

The automorphism 7, (of the algebra generated by
a; and b,) is now characterized by

—10Ak
b, — bye

(15)

One could again reformulate everything in terms of a
Bose (or Fermi) system over L3(1R3) @ £2(R3); it is

ay — a,e%%,
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then immediately seen that the generalization intro-
duced here is necessary if 7, has to acquire an inter-
pretation as a gauge group of the second kind.

Also, for the representations of the algebra (14) and
the action of the group of transformations (15), a
result holds which is the analog of Propositions 3 and
3’; the place of the discrete representations is now
taken by a somewhat more complex class. Let a; and
b; be given as operators in JC;; a tensor product
representation of the algebra (14) will be called
charge discrete if it is (unitarily equivalent to the one)
defined by the construction outlined in Sec. 1(B), on
the space ®} J¢;, where the vector & = {£;} (also
denoted by ®, &;) is charge discrete in the following
sense.

Definition: With the previous notation, let &7, n =
0, £1, £2,:--, be the orthogonal projections of
;€ X, on the eigenspace of afa, — b}b, relative to
the eigenvaiue n. Then ¢ is charge discrete if and only
if

S e g < oo
n,t,7
or, equivalently, if there exists a function k& — n(k)
such that

(16)

Z (1 — |E"®PR) < co. (16"

(Loosely speaking, the £; are, for all but a finite
number of values of i, “almost” eigenvalues of
N({i - Nbi .)

With this definition, one has the following proposi-
tion, a proof of which can be obtained by a simple
adaptation of the proof of Propositions 3 and 3":

Proposition 6: The mapping 7,, defined by (15) on
the algebra 4 generated by the operators in (14), can
be implemented in a tensor product representation by
unitary operators U, for all 6 in a neighborhood of
6 = 0 (and then in all neighborhoods) if and only
if the representation is charge discrete. When this
condition is met, the U, can be taken to form a
weakly continuous group, and the corresponding
generator I" has £ in its domain if {2,} does not have
oo as a limit point (this condition is only sufficient).

3. RELATIVISTIC FREE FIELDS AND LOCAL
CHARGES

A. Local Gauge Transformations
We shall now use the results of Sec. 2 to make
statements about local gauge transformations of a
relativistic free field. We shall consider only a charged

scalar field, but the results hold for charged fields of
any spin.
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A free scalar field is (see, e.g., Ref. 13) a continuous
linear functional on a space of (sufficiently smooth)
solutions of the Klein-Gordon equation, with values
in (unbounded) self-adjoint operators on a Hilbert
space J such that

[6*(/), ¢(8)] = (f, 8)xal,

[4()), $()] = 0, an

with
(f’ g)KG EJ;:D (f(x’ t) % g(x, t)
= g0 3 7, D)o

Another definition,31415 which avoids the domain
questions which must be specified in (17), is, loosely
speaking, an exponentiated version of (17), and con-
sists in a mapping from a space of (smooth) solutions
of the Klein-Gordon equation to pairs of unitary
operators W,(f), Wy(g) satisfying

W;(f)W;(g) = W;(g)Wé(f),

Wi(f)Wa(g) = Wa(@)Wi(f)exp [} Im (f.8)xe] (17)

with the proviso that only those representations are
considered in which

is, for fixed f, strongly continuous in 2 (to ensure the
existence of the fields ¢).

We shall, by way of example, consider the Fock
representation, in which all domain problems are
easily settled (and also the arbitrariness in the choice
of the space of solutions of the KG equation does not
effect the results), and we shall work in the unexpo-
nentiated form.

From the corresponding property of the solutions
of the KG equation, it follows that a free field is
identified by the restriction at some fixed time 7, of the
field and of its first time derivative. In conventional
notations, this characterizes a field as a mapping

£(R®) > 8§35/~ ($(f 1), 7(f, 16)).
We have

$(f, ) = a(fote™) + b¥(furte o,

in(/,1) = a(fwle) — b*(folet,  (18)
where f is the Fourier transform of / and w(k) =
(k2 + m2)t.

In (18), a(x) and b(x) are representations of a Bose

system [over £2(R3)]; in the representation space
there exists a (unique, up to a phase) vector Q in the

domain of a(-), &(-), such that a(y)Q = b(x)Q = 0,
x € £2(IR3),
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It should be noted that another natural representa-
tion of a Bose system can be obtained from (18)
(always on Fock space) writing

¢(f, 1) = () + BN,

in(f, 1) = 2l f) — BF(S). (19)
There exist now, in the Fock representation, no
vector ' in the domain of «, and «f (or rather of
their closure) such that «,()Q" = 8,(Q = 0, for
y and some f. One could, of course, construct a
representation in which such a vector Q exists; this
would be a natural representation for the description
of gauge transformations, inasmuch as one can find
unitary operators inducing any given transformation
f— €%, at least if ¢ is sufficiently smooth.

However, in terms of the « and the # which appear

in (19), the time evolution has now a complicated
form, e.g.,

alf) = a(fM) + (), (19"

where

(k) = cos (tw,) + }i(w? + w®) sin (tw,),
JEk) = 3i(of — w® sin (twy).

It is easily seen, using, e.g., the methods of Ref. 16,
that for no value of ¢ can one find a unitary operator
U(¢) inducing (19'); in particular, a Hamiltonian does
not exist.

This fact is at the basis of the difficulty in construct-
ing “local charges” for a free relativistic field and, in
general, for a nonfree field in the interaction represen-
tation. We are now ready to prove the following.

Proposition 7: Let Sf—(¢(f), #(f)) provide the
(t = 0 description of the) Fock representation of a
free scalar charged relativistic fiel®; let B be any open
set in R3 with the piecewise differentiable boundaries.
Then there exists no real number 0, different from 2nmw,
neZ, for which one can find a unitary operator U,
such that

Uﬂ{(ﬁ(f)}ugl - ei{qﬁ(f)} if suppfec B,

(f) (f)
Byt _ [N AE—
U"{w(f)}" {W(f)} '\ suppf ¢

(20)

The proof relies on the fact that,'d under the hypotheses
of Proposition 7, the representation space ¥, can
be written as

Q;
@ N
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on each X, acts a quartet of operators d;, d;, b,, b,
such that [d;,d*) =---[b,b*] =1 and all other
commutators vanish. Theset d,, - - -, 5;* isirreducible
in J;. Denote by a;,---,b;* the images of the
natural “lifting” of d;, - - to ®$ ¥,. The a, and 4]
provide a representation of a (complex) free Bose
system over

Mo~ = {0, fe S, suppf < B}

(the closure is taken in the topology provided by the
positive bilinear form

[/, gl = (f, ©7gerrsy),

with the correspondence a<«> a(), a;<> a'(&),
where the §;, 7 =1, 2, - -, are the eigenfunctions of
a positive self-adjoint operator A, with totally dis-
crete spectrum and eigenvalues A7, 4, — o when
i— oo, Similarly, b; and b; are associated with a
representation of a complex Bose system over

N- = {olf, fe D, suppf < R? — B}

The mapping defined in (20) derives from the following
mapping on the set of functions on which ¢(:) and
m(+) are defined:

f—€° if suppf< B,

f—f if suppfNB=¢; (20"
this induces on A the transformation &€ M —
€% e A (which extends to a unitary transformation
of A7) and on N (and therefore N-) the identity
transformation.

Therefore, the mapping (20) takes the form

bi—>bi. (21)

a;—> alceios al: g a,;e—io, b, — b;,
It can be proved finally that
a; ;= 0} Q; = B,Q,; = fiQ; =0,
where
a; = o; + (B — B,
and similarly for a; and b;.
Since Y, A} = o, the vector ®; L, is not charge-
discrete relative to > N, — > N, and Proposition 6
(or rather an easy generalization thereof) completes
the proof of Proposition 7. A similar line of argu-
ments could be used to prove that in a Fock repre-

sentation one cannot find a unitary operator inducing
the following transformation:

$1(f) — Tig'(f) suppfc B,
#(f) — Tim(f),
$() — $()
7 (f) — 7(f),

b; = B; — Aoy + %)

supp f N B = ¢,
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where T is a unitary matrix, i, j=1,2,--+,n, N =
oo allowed, if (¢, 7%), i =1,2,---, n, form a set of
n scalar-free relativistic fields and B is an open region
in R® with piece-wise differentiable boundaries.

B. Smooth Function on R3

The results of the preceding section are precise
statements which go in the following intuitive direc-
tion: Even if jy(x, t) is a putative charge density,

f j(x, Dpx)dx

does not exist as an operator when y is the charac-
teristic function of the open set B. It would clearly be
desirable to make statements in a direction corre-
sponding to y being any “smooth” function on R3,
We shall now do so, but for this aim the results of
Secs. 1 and 2 will no longer be sufficient. Let ¢ be
infinitely many times differentiable and with support
in an open region B < [R3 (in short, ¢ € Dp).

We shall study the transformation induced on the
field by the mapping

T f > €°f (22)
of the underlying space (in this case, S). Let A be

defined as before; on A, 7, induces the following
transformation 7,:

£ ot 0lt = 1t (23)

It can be shown that 7, extends to a bounded operator
C(¢) on M—; its adjoint is the closure of
P‘M)—(U%eiq’w_éP'M)— .

where P y - is the orthogonal projection onto ™.

Let & be an orthonormal complete family of
eigenfunctions of A, with eigenvalues 1,, and C,;(¢)
the matrix form of C(¢) in this basis. Then, with
é; = ¢(f;) and =, = m(f;), the mapping (22) reads

¢~ Cif(@)d;, mi— d;j(@)m;,
dij(p) = (&, C*(—p)¢))

[notice that C(@))C(g2) = C(gy + ¢2), C(0) = I].
The transformation properties of the operators
a, -+, by¥ are then

where

ai = §(ci + aday + $ew — opar®

+ (o — )b — by),
Hea + ag)be — 3eq — op)bi*

+ AlCa — Su)(a* — ap),

and similar ones for a; and b,,.

bl

It

(24)

155

Since a;,---,b* provide an irreducible Fock
representation of the CCR’s, it is known (Ref. 16,
Theorem 4.1) that the transformation (24) [and there-
fore the transformation (22)] can be induced by a
unitary operator if and only if the operators C(¢) —
D(p), Al — C(p)), and (D(¢) — 1)A are Hilbert-
Schmidt.

It turns out, however, that A(l — C(¢)) and
(I — D(@))A are not Hilbert-Schmidt for any ¢ € S,
supp ¢ € B; we shall sketch the proof for A(1 — C(g)).
We shall, in fact, show that A(l — C(g)) is not
bounded (this result does not depend on the number
of space dimensions).

To prove that A(l — C(¢)) is not bounded, it
suffices to find ge C,(B), such that (1 — e®)ge
Co(B), (1 —€*)g¢ Dy,-1, where B is any open
region which contains the support of ¢, has piece-
wise differentiable boundaries and a complement B+
(in [R3) with nonempty interior.

Since ¢ € D, we see that 1 — cos ¢ is measurable,
and one can find an open set B, = B such that
(1 —cos @) > € on B;. With B, € B, assume that
h € D(B,). Then g, defined by g = h(l — %), has
support in By, is C*, and is such that (1 — ¢")g = h.
The proof that A(l — ¢) is not bounded is now
completed by showing'*!% that one can choose
heD(By)sothat h¢ Dy, .

C. Conclusions

It is worth noting that one can provide alternative
proofs of Proposition 8 and even extend it to any
@ €S (not necessarily with compact support). In
particular, one could notice that Eq. (24) holds, for
any ¢ € S, with 4, = 0 and C,,, D,, the matrix form,
relative to a suitable basis &;, of the closable bilinear
forms defined on (a dense set of) £2(R3) by the
operators w¥e*?w! and wle®w-t, respectively. One
can then show that no Hilbert-Schmidt operator K
exists such that (&, K&;) = C;; — Dy;, and use the
techniques of Ref. 16 to prove the nonexistence of U, .
The analysis presented here goes somewhat beyond
this result; in particular, it provides [see Eq. (21)],
for any given region B, a large class of representations
in which the total charge in B is defined. Also, if it
can be proved that the operator C(¢) — D(p) [see
Eqgs. (23)] is Hilbert-Schmidt for'” all ¢ € D(B), then
Eq. (24) selects in a natural way a class of tensor
product representations in which the charge density
in 6 is defined.

It is, of course, beyond the scope of this paper to
answer the question whether there exists a repre-

sentation (not of tensor product type) of a relativistic

Bose field in which space-time translations and local
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gauge transformations are induced by continuous
groups of unitary operation.
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The notion of space-time is generalized in order to include the non-Hausdorft manifolds that do not
admit any sort of pathological bifurcate curves. By means of these space-times, a geodesically complete

extension of Taub and NUT space is constructed.

1. INTRODUCTION

In an earlier paper,' an extension of the tangent
bundles of the Taub and NUT spaces has been
constructed and shown to contain much more com-
plete geodesics than the Taub-NUT space. A dis-
cussion of the paper with R. J. Geroch and S. W.
Hawking revealed the following three facts:

(1) Cutting out points from the hypermanifold is
not uniquely determined by the condition that the
resulting space must be Hausdorff.

(2) The use of the bundle of frames instead of the
tangent bundle when constructing the hypermanifold
could be more effective in the sense that the condition
of Hausdorffness would not then require cutting out
any points.

(3) The example of non-Hausdorff extension of
the Taub and the NUT spaces shows that there are
non-Hausdorfl' spaces in which no curve has more
than one end point. What is the difference between
this sort of non-Hausdorff space and that with curves
of more continuations ?

In the present paper, this last question is going to
be answered. By the same tools, the remaining points
will be clarified.

2. BIFURCATE SURFACES IN E®

Suppose we have two square sheets @, and g, of
paper with some coordinates on them—for instance,
the following:

0 —1<<x<l, =1l <x<l,
ds? = (dx')® + (dx?)?,
O, —1<y<l, —1<yP<l,

dst = () + (dy?)

Now, we glue 0, and @, together in some way and
wish to describe the construction. One way of doing
this is to give the map ¢:4 — B, A < Q,and B < Q,,
which associates the point @(p) of Q, glued on p to
each such point p of Q,. The sets 4 and B will be
called the overlapping sets and the map ¢ the gluing

map; they must have the following properties:

(1) 4 is open (or else the resulting space would not
be a manifold),

(2) @isadiffeomorphism of appropriate differentia-
bility class of 4 onto B (or else Q, or Q, would be
torn or the resulting space would not be smooth),

(3) @ is an isometry (or else Q; or Q, would be
folded).

In Fig. 1, two cases of gluing together Q; and Q,
are shown, the characteristics of which are given in
Table I. We observe the following:

(1) In case I, every curve has exactly one end point.
In case 1I, the geodesic

xXt=ys, x*=0, pl=ys, y2=0

is bifurcate.

(2) In case I, neither the gluing map nor its inverse
has any continuous extension in the following sense:
There is no connected set 4’ < @, (B’ < Q,) con-
taining a component C, of A (Cy of B) as a proper
subset and a map y:4' — Q, (y:B’ — Q,) such that
@ ¥lo, = ¢ @, = ¢ and (b) v is continuous.

On the other hand, in case I1, there is such an exten-
sion y:Q; — Q, given by y! = x1, ¥ = xt

T Q,
sl

)

Fi1G. 1. Two possible cases of gluing together @, and Q,.
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TasLe 1. Description of the overlapping sets and the gluing maps corresponding
to the two cases in Fig. 1.

Case Overlapping sets Gluing maps
i A< Gy 0< <], -1I<x<1 L P=at—1
Bo @y —1<yt<0,~1<y¥<1 Py =y
nn A< Qi —1<x<0,~1<x<1 =
B @ —1<y'<0,~1<y'<1 Py =yt

The gluings, such as in case I, will be called con-
tinuously inextendable. We shall see that the relation
between the continuous extendability and occurrence
of the bifurcate geodesics as suggested by the observa-
tions (1) and (2) is very simple and general.

3. BIFURCATE SPACE-TIMES

A space-time manifold is a 4-dimensional con-
nected paracompact, not necessarily Hausdorff,
manifold of some differentiability class C* with
pseudo-Riemannian metric of signature —2 and
differentiability class C*, I < k.

A space-time manifold which is Hausdorff will be
simply called a Hausdorff space-time.

Next, we shall be interested in bifurcate curves;
there are two kinds of them. Under a bifurcate curve,
we understand a pair of curves C, C’ in a space-time
manifold M, C:[0, 1]— M, C’':{0, 1] — M such that

C=C on [0,g], C#C on (gl],

0<g<1,
for the first kind and v
C=C on [0,g), C#C on [g]1],
’ 0<g<Ly,

for the second kind.

The first kind of bifurcate curve can be found in
every space-time manifold. It is the innocuous kind
because it never leads to bifurcate geodesics or other
pathologies: The accelerations of the two curves C
and C' in the point C(g) = C’(g) must be different
from each other (if defined at all). This is not the case
for the second kind, which, however, can exist only
in non-Hausdorff space-time manifolds, because in
every neighborhood of C(g) must lie some points of
every neighborhood of C’(g), namely some points of
([0, g)). The curves C and C’ can already have the
same acceleration or other invariant characteristics in
every pair of points C(1), C'(1), t € [0, 1], not leading
to any controversy with the uniqueness theorem for
the corresponding system of differential equations.

Now, we can state our main définition and theorem.

Definition: A space~time is a space-time manifold
which results from gluing together at most countable

number of Hausdorff space-times. Each gluing with
the gluing map ¢ and the overlapping sets A and B
must have the following properties:

(a) A is open,

(b) ¢ is a diffeomorphism of class C* of 4 onto B,

{€) ¢ is isometry,

(d) the gluing is continuously inextendable.

Space-times which are non-Hausdorff will be called
bifurcate.

Theorem: The necessary and sufficient condition for
a manifold constructed by gluing together Hausdorff
manifolds to admit bifurcate curves of the second kind
is that the gluing be continuously extendable.

Proof: (1) Every space-time manifold is locally
Hausdorff because it is locally homeomorph to E%
Whether the manifold as a whole is Hausdorff or not
depends, therefore, entirely on the way in which its
charts are glued together. Suppose that the gluing is
continuously extendable for some two charts (U, &,)
and (U,, hy), say; let the overlapping sets be 4; < U,
and 4, © U, and the gluing map be ¢. Assume for the
sake of simplicity that A4, is connected. Then there is
some conmected set Af such that 4, < 4 < Uy,
Aj — Ay # @, and the mapping y: 4] — Uy, 9|, =
@ is continuous. Choose a point pe A, N 4}
where the dot denotes the topological boundary.
As A, is open, a timelike or spacelike curve C always
exists with one end point in p such that {C} — p < 4,.
The second curve C’ given by C'=yo C is well
defined because v is continuous. But then the pair
C, C'is a curve with two end points, for p # y(p), and
this is a special case of a bifurcate curve of the second
kind.

(2) Suppose that there is a bifurcate curve of the
second kind in M. That is to say, we have a pair of
curves C, C':[0,1]— M, identical on [0, g) and
different on {g, 1]. This is only possible if C lies in
some (Uy, hy), C' lies in some (Uy, hy), and if both
charts are glued together along some open sets A,
and A, such that C([0,g)) < 4;, C'(I0,g)) < 4.,
Clg, 1) N4, =0, and C'([g, 1) N4, = &. Let
the corresponding gluing map be ¢:4; — A,. Then
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we can construct a map y: (4, U {C}) — (4, U {C})
in the following way: y|, = @, y|g=C °C™
The set 4, U {C} is connected because 4, and {C} are
and A4, N{C}# @. The map u is well defined
because @]~y = C'° CY 4 ~(e;» € being one-to-
one and continuous because C*, C’, and ¢ are. Thus,
the gluing is continuously extendable. QED

4, MAXIMAL ANALYTIC EXTENSION OF THE
TAUB=-NUT SPACE

What remains to be shown is that the class of the
bifurcate space-times is nonempty. This will be done
by means of an example.

In Refs. 2 and 1, the extensions Ty, T,, P;, P, and
P; of the Taub and NUT spaces were described. We
repeat some information on them in appropriate
coordinates.

T,: topology R x S°
coordinates — 0 < z; < 0, 0<L ¢ <4,
0<6,<m 0< ¢ <2m,
ds® = —Q1)*[2(dé; + cos 8, dg,) dz,
+ U(zy)(dé, + cos b, dg,)*
+ }4z1 + D6} + sin® 6, d¢")];
T,: topology R x S%,
coordinates —o0 < z, < o0, 0<L &, < 47,
0< 6, <, OS‘P2<27T,
ds® = —(21)*[~2(d&, + cos 0, dg,) dz,
+ U(z)(d€; + cos 0, do,)*
+ 1423 + 1)(d03 + sin® 6, dg”)];
P,: topology [Z,, ®0) x S°,
coordinates Z, < u; < 0, 0<L & < 4w,
0<mLm 0L 9 <2m,
ds® = (2D’ [U™(uy) du} — U(u;)(dé, + cos T d’l’l)2
— H4ui + 1)(dr; + sin® 5, dy))];
P,: topology [Z,, Z,] x S°,
coordinates Z, < u, < Z,, 0<§, < 4m,
0L m<m 0L yy<2m,
ds* = 21’ [UY(up) duf — U(up)(d&, + cos N2 dy,)*
— H4uj + 1)(dys + sin® 9, dy))];
P;: topology (— 0, Z;| x S%,
coordinates — o0 < uy; < Z,, 0<L & < 4m,
0L <m 0< y3<2m,
ds® = QDU (uy) duj — U(us)(d€; + cos ng dys)®
— $duy + 1)(dn3 + sin® 7, dy3)].
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Here / 3 0 is a parameter, Z; < Z, are real numbers,
and

4x — Z)(Zy —
Ux) = 2 4x21)J(r : X)

Now, we can glue together all the spaces into a
bifurcate space-time by means of the following
gluing maps:

0y = 01,
7, Zy: by =8 — 2z

+ $(Zy — Z) ' [—(4Z5 + D log(Z, — z,)
— (4Z% + D log (Z, — z,)],

29 = 21, P = @1,

2, <z, <Zy: &y =6 -2z
+ HZ, — Z) 7 [-(4Z3 + 1) log (Z, — z)
+ (423 + 1) log (z, — Z))],
Z, L z;0 & =6 -2z
+ ¥Z, — Z) (423 + V) log (2, — Zy)
+ (4Z; + D log(z, — Z))],

for the space-times 7, and T,, and

Z, < z;: n =0y,

U =z,

Yi= ¢1,
=& —12
+ XZ, — Z,)7'[(4Z5 + 1) log (z, — Zy)
+ (4Z3 + 1) log (z, — Z))],

Zl<zl<22: u2=21} 772=01’1/}2=(p1’

§o=8—1z
+ HZ, — Z)7[-(4Z3 + 1) log(Z, — z1)
+ (4Zf + 1) log(z, — Zy)],

21 <Zy: ug=1zy, My=0;, Y=,

=& —1z;
+ HZ, — Z)) ' [—(4Z; + 1) log (Z, — z,)
— (42 + D log (Z, — z))],

for the space-times 7, and P,, T, and P,, and 7, and
P, respectively.

This description determines the space which we
wanted to construct sufficiently, the remaining gluing
maps being superpositions of the given ones. The
obtained non-Hausdorff manifold 7 is a bifurcate
space-time because none of the gluing maps are
extendable: They get singular on the boundaries of
the overlapping sets. (See also Ref. 3.)

This example is of interest for itself. In fact, we
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have arrived at a geodesically complete bifurcate
space-time which extends the Taub space. The kind
of extension is, of course, not quite clear because of
the strange nature of the spaces P,, P,, and P,
(see Ref. 1).

It is not difficult to show by the method used already
in Ref. 1 that the bundle of frames of T is a Hausdorff
space in accordance with the suggestion of Hawking
as mentioned in the first section. Thus, the Taub-
NUT hypermanifold constructed by means of bundles
of frames is a bundle of frames, and in this aspect it
has a simpler structure than that constructed by means
of tangent bundle in Ref. 1. The definition of bifurcate
space-times renders it possible to work directly with
the space-time instead with some of its bundles. But
the bundle of frames of T could remain interesting in
connection with another question: What behavior
will the metric due to Schmidt show on it?* The
question is nontrivial and may contribute to the
understanding of the spaces P;.

Another observation is that almost each of the
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spacelike 3-dimensional hypersurfaces z; = u, = z, =
Z,7,<Z < Z,, is compact, and the normals to it
converge everywhere. In this way, the bifurcate space—
times need not satisfy Theorem 1 of Hawking’s paper.?
(This is, of course, strongly conditioned by whether
P; are regarded as regular or not.) That is to say, the
bifurcate space-times could be, in a sense, less
singular than the Hausdorff ones.
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The product integral is shown to be the appropriate mathematical tool for implementing the path

integral for spin in its simplest form,

INTRODUCTION

Various proposals have been made for accommo-
dating spin into the framework of Feynman’s path
integral formulation of quantum mechanics.!~5 How-
ever, in our opinion, none of these theories is the
sort of thing one would use to solve easy problems.
From the standpoint of economy, the simplest path
integral for spin should have no more new physical
ideas than are necessary to go from the nonrelativistic
Schrédinger equation without spin to that with spin.

The way to include spin was clear to Feynman
at least as far back as his first paper on path integrals.®
His suggestion was to put spinors in the Lagrangian
and then, when path integrating, pay attention to the
ordering of operators. The same formal prescription
can also be applied to the Dirac equation.” However,

the presumed complexity of the mathematical opera-
tions has prevented implementation of these ideas.?

In fact, work on the mathematical techniques
necessary for this implementation first began in 1887.
Volterra® studied infinite products of matrices, and,
subsequently, Schlesinger,’® Rasch,!! and Masani!?
developed the theory of this “product integral.”
As we shall see, many of its properties are appropriate
for physical application. The motivation for the study
of the product integral was systems of coupled first-
order linear equations. The nonrelativistic Schrodinger
equation with spin is obviously an example of such
a system. When spin and orbital motion are coupled,
however, the unboundedness of the operators in-
volved precludes fully rigorous statements (in this
article anyway).
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PATH INTEGRALS AND PRODUCT INTEGRALS

In the next section we present the formal path
integral for spin referred to above. This will introduce
the theory of the product integral. We will then show
just how neatly the product integral specializes to
spin, and give a worked example, intending to demon-
strate thereby that in its present form the path integral
can give a simple answer to a simple question. The
final section is a discussion.

FORMAL PATH INTEGRAL FOR SPIN

The Green’s function for the Schrodinger equation
satisfies

id N o IS gt
(H—BI)G(t’t)_ io(t — t') (1)

so that, if A is independent of ¢, G(¢, t) = 0(t — t') X
exp [—iH(t — t')]. If ¥'(¢) is a solution of the Schro-
dinger equation with initial (") condition ¥(¢'), then
W(r) = G(,tYY(t'). For t > t' > t" we have

G(t,t") = G, )G, t"). 2)

The basic fact on which the theory of path integra-
tion rests is that, for sufficiently small 7 — ¢', the
coordinate space matrix elements of G(z,t’) can be
well approximated by

G(x, t;x',t")

3 ; ne

- (—"?——) exp (ﬂ‘(—x:"—) — iVt - t')),
2mi(t — 1) 2t —t)

3)

where ¥'(-, 1) € Ly(R3) and H = —(A2m) + V(x). A

given time interval [t', t] is broken into subintervals

[tla tl]’ [tla tz]a T, [tN—z’ tN—l]: [tN—la t]s and on

each of these G is approximated by (3). Equation (2)

is then used repeatedly and advantage taken of the

fact that the product of exponentials is the exponential
of the sum to obtain the formula

G(x, t;x', 1)

N/2
=f. : -fdsxl . d3xN_1(_m__)
2mie

N-1 '

x e [ i3 (2 0 = %)" = Ve [ @
=0 \2e

where t'=1t,, x' =Xx,, X = X,

(t — ¢")/N. The sum in the exponent is an approxi-

mating sum for the action evaluated aiong the broken

line path through x,, X;, - - -, X,v. The action is

t
St = [ L0x), 3] e

and L = }mx® — V(x). By integrating over x;,- -,
Xy._1, We get a sum over (these broken line) paths of

€ =

1= tz\"
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the quantity Ae’S/%, with 4 the constant given above.
The finite-time Green’s function is then the limit of (4)
as N — co. This sum over paths is sometimes written
as

G =f®x(t) exp {iS[x(1)]}. 5)
In the presence of a magnetic field a term ex - A(x)
is added to the Lagrangian L. However, when we
approximate G as in (3) or (4), it is not adequate
to evaluate A at x; or x;,, as for V(x), but rather a
combination such as the following must be taken:

e(x;, — x;) - 3[A(x)) + A(x;30)] (6)

For spin-} particles the wavefunction is a 2-
component spinor, and the Hamiltonian is

H= 2m)*(p — eA + V + yo - B, (M

where v is a constant related to the magnetic moment.
Feynman observed that, by replacing (6) by

se[(x;,1 — x;) - 6][A(x)) - o]

+ %e[A(xH—l) . G][(XHI - (3)

a particular value of y is obtained.®!* However, it is
not necessary to be so dramatic, and in addition to
(6) one can simply add a term iyo - B(z)(t — t') to the
argument of the exponential in (3).

Now, however, the product of exponentials need
not be the exponential of the sum, and the noncom-
mutativity of the spin matrices requires that the
iterated Green’s function remain a product. For
example, where B is independent of x, the spatial
wavefunction can be ignored and the spin Green’s
function can be written

x]’) * 0'],

N-1
G(t, 0) = T exp [—iyB(ne) - oe] €)
n=0
with factors of lower n to the right of those with
higher 7.
This much was explicit or implicit in Feynman’s
original work.

PRODUCT INTEGRAL

The concept of the product integral can, in general,
be developed for L, functions from a linearly ordered
measure space to a Banach algebra. But for the
purposes of this paper it is sufficient to consider the
Riemann theory of product integrals as developed by
Schiesinger,'* whodeals with functions from [a, ] =« R
to the algebra of n X »n matrices (X).

The Riemann product integral of a matrix-valued
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function fis defined by
7o
[[exp U

= lim H exp [/(t)  1A]]
= lim (exp /(1) 18,11+~ exp /(1) A1), (10)

where 7 is a partition of [a, b] into subintervals A,
and t, € A1 Thus, the product integral of a matrix-
valued function is itself matrix valued. Finally, one
can make the product integral a function from R to
X. Let

F(t, a) =f'exp () dx] = f exp [f(%) - 20,0 dx].
(11)

where ¥, is the characteristic function of the
interval [a, t]. It can be shown that this satisfies

Ft,a) =1+ f }(x)F(x, a) dx, (12)

F'(t, a) = f(DE(1, a), (13)
where f(x), f(.\', a) € X. Equation (12) can be iterated
to yield

Fia) =1 + f F(ty) dy

+ f 1t f )1y, a) dty dt,.

This scheme of substitution leads to the Peano series
o i
F(t,a)=1 +ff(t1) dt,

t t
+ff(t1)f f) dtadty + -+, (14)

Another important equation involves the “integra-
tion by parts’ 12 identity for product integrals:

-

j exp {[f(x) + g(x)] dx}

_ fexp 0 dx] f e [ (fexp L7 dsl)

[

X g(x) ( f “exp [£(5) ds]) dx]. (15)

It is illustrative to look at the commutative case for
the equations given above:

(@) F(t,a) = f* exp [f(x) dx] = exp [f% f(x) ds].

(b) The Peano series yields the series expansion for

exp [Jif(x) dx].
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(c) Equation (15) simply verifies that the exponen-
tial rule now works, i.e., that

exp (4 + B) = exp (4) exp (B).

The resemblance of the product integral, as defined
in Eq. (10), to the time-ordered product is not at all
accidental and reflects their common use in the
description of evolution. Formulas with a great
similarity to those we are using can be found in Ref.
16, Appendix H, as can references to other work
along these lines.

SUM OVER HISTORIES IN SPIN SPACE

While it is obvious that the path integral can be
thought of as a kind of product integral, we emphasize
that we are not making this identification for the
space coordinates of the system. It would be very nice
if for the f(x) of Eq. (10) we could substitute —iH,
where H is the usual Hamiltonian for the Schrédinger
equation with or without spin. That is,

G(1, 1) =f

t

t
exp [—iH(7) dr]. (16)

Certainly the “equation’ (16) suggests that product
integration may be useful in this context, and Kato!?
has employed similar techniques in studies of an
evolution operator. However, the integration by
parts formula [Eq. (15)] does not seem to have been
established from this point of view. On the other hand,
this formula is certainly not new to physics, and one
may easily observe that it is formally identical with
the expression for the propagator obtained from the
interaction picture.1®

The question to which we can rigorously address
ourselves, however, involves a particle with spin in
a spatially homogeneous magnetic field. This allows
the separation of space and spin coordinates, and we
discuss the latter.

The Green’s function for the spin coordinates,
given in Eq. (9), can be written

G(t,0) =J:exp [—iye - B(7) d7]. an

To interpret this as a sum over paths, we include the
indices for the 2 X 2 matrices and indicate the limit:

G(t, 0)ye = lim 3 {exp [—iyo « B(t — €)el}pay_,
N-ow {a}
x {exp [—iye « B(t — 2€)e]}uy_an_,
X+ x {exp [—iyo - B(0)el}, ., (18)
where € = t/N and the sum isover ay = 1, |, o = T,
oo ayy =1, |. If we imagine that this acts on
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some initial state, then the meaning is clear. Each
factor in each summand of (18) is an amplitude for
going from one to another (possibly the same) posi-
tion, and each summand is the amplitude for a
specific history of possibilities. As ¢ — 0, the indi-
vidual factors approach unity, but there is still some
amplitude for going from one of the discrete states to
the other.

Each “path” for this path integral is thus a sequence
whose entries are the symbols 1 and |. When the
mesh in 7 is fine enough to neglect the time dependence
of B(t), successive factors in each of the products in
Eq. (18) commute with one another, and the integral
over these stretches can be performed. If one never-
theless wishes to evaluate the sum over sequences of
1, | for constant B, the problem is of an essentially
combinatorial character and bears some resemblance
to the “relativistic 1-dimensional particle” path
integral described by Feynman and Hibbs.® In
summing over paths in the discrete spin space, it turns
out that, as the angle 6 of magnetic field with the z
axis approaches 0 or =, the most important contribu-
tions to the sum involve paths with the smallest
number of switches (1 to |) or (| to T) and conversely
for 6 near §=. This suggests a kind of classical inter-
pretation, and in Footnote 20 we shall indicate how
the classical top itself can be cast as a product integral.

For magnetic fields which are not uniform, space
and spin coordinates do not separate, and one is
essentially back to Feynman’s formal prescription. If
the sum over spin histories is performed first, one
obtains

Gx, t;x', t)
m

N/2
— “. b J~d3x1 A ds-xA\Y__l (__‘—)
. 2mie

~

N-1 t
x exp (i3 Sys) [ exo =iya B 0 dr
J=0 1

where S, ; is the action evaluated along the line from
X; to X;,, (in the time €). The X appearing in B(X, ¢) is
the broken line connecting x'x, - - - X_;x. The (spin)
product integral can be evaluated (in principle) along
this path and then the integral over x;---xy_;
performed.

One circumstance under which this may not be an
entirely impractical procedure is in the semiclassical
limit, where the most important contribution to the
sum over paths is from the “classical path” (that
obeying the classical equations of motion). In that
case B[x(¢),?] would, in effect, be some definite
function of ¢.
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A WORKED EXAMPLE

We illustrate our claim that simple problems have
simple solutions with the example of magnetic
resonance.

A spin-} particle is in the following time-dependent,
spatially homogeneous magnetic field:

B(t) = 2 + A(% cos wt — J sin wt). (19)

The Green’s function of Eq. (17) is computed by
breaking up the integrand as in the “integration by
parts” formula (15). To the physicist, particularly one
who has solved this problem by other means,?! this
formula will be seen to be the transition to the inter-
action picture. We break up the integrand with the
following identifications:

[ = }iva,,
g = —ioy + }w) — iyA(o, cos wt — g, sin wt).

(20)
It may be verified that

L’exp [/(x) dx] = exp (— biwa, ),

so that this term appearing in the second factor of the
right-hand side of Eq. (15) essentially brings the
rotating field to rest. Performing the remaining trivial
integrations leads to

G(t,0) = exp (—iwo,t)

x exp {—ifo,(y + }o) + o pdlt}. (21)

The motion is in effect compounded of two rotations.?

In a magnetic resonance experiment, one would be
most likely to encounter a linearly polarized field.
The argument of the exponential would therefore
contain an additional term

h = —iyA(o, cos wt + ¢, sin wi), (22)

which would at first be included with the g of Eq. (20).
After the transformation by f, this term would become

—iyA(o, cos 2wt + o, sin 2wt); (23)

it would rotate at twice the frequency. The expression
(23) would then be separated from the transformed g
by another integration by parts to yield

G(1,0) = G, O)Jtexp {exp (ic - 1Q7)
0

X [—iyA(o, cos 2wt 4 o, sin 2wt)]

X exp (—io - 1Q7) dr}, (24)
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where G©(t, 0) is the expression given in (21) and
R = #(y + }w) + XyA. It is reasonable to expand
the right-hand factor of (24) via the Peano series
[Eq. (14)], which is just perturbation theory.

The foregoing manipulations are effectively identical
to those described by Gottfried.? There is no new
physics in this approach, and our only intention is to
show the manageability, indeed convenience, of this
formulation.

DISCUSSION

The product integral is a natural tool for many
problems in physics because it is tailor made for pro-
cesses in which there is some sort of evolution. Indeed,
Arley?®2 used this technique to study cascades induced
by cosmic rays, and, while at this time mathematical
difficulties prevent full exploitation of the obvious
relation between path integration and product
integration, it is nevertheless possible, as we have
shown in this paper, to have a quite reasonable path
integral for spin in terms of the product integral.

There are one or two obvious points to be made.
First, although our calculations involved spin §, any
other spin would have been just as good. Second,
problems involving transitions among a finite number
of levels could be handled by product integration if
one supplied an effective Hamiltonian for the mutual
interaction.
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Orthogonalized plane waves (OPW’s) are orthogonal to the core states by construction, but they
are not mutually orthogonal. Furthermore, the set of all core states plus all OPW's is overcomplete.
In this paper we construct a set of “‘completely orthogonalized plane waves” (COPW’s) which share
with OPW'’s the properties of being orthogonal to the core states and simply related to plane waves, but
are superior to OPW’s in that the set of all core states plus all COPW’s is both orthonormal and complete

(not overcomplete).

1. INTRODUCTION

The use of OPW’s in the 1-electron band theory of
solids has a long history, extending back to their
original invention for this purpose by Herring! and
in recent years reaching a high level of sophistication
in the pseudopotential method.? Although the lack of
linear independence of OPW’s and the resultant
overcompleteness of the set of all core states plus all
OPW’s has apparently not been much of a problem in
l-electron applications, it can cause serious difficuities
in applications to many-body problems. It has recently
been shown® how these difficulties can be circumvented
in the case of many-electron problems. However, the
method proposed there® is rather complex alge-
braically, and furthermore is not readily applicable
to many-boson problems.t In the present paper, we
shall show how a simple modification of the usual
OPW formalism leads to a complete orthonormal set
of states which is readily applicable to 1-particle,
many-fermion, and many-boson problems.

2. ORTHOGONALIZED PLANE WAVES

Suppose that we are provided with a set of “core”
or “bound” states ¢,(x) which are orthonormal but
not complete, together with a complete, orthonormal
set of “plane waves” y,(x); here, x stands for all
spatial and spin variables of a single particle, and
§ dx will imply integration over spatial and summation
over spin variables. The usual OPW’s ¢, are defined by

¢k(x) = wk(x) _'Za(a I k)¢a(x)’ (1)

where

(o] ) =f¢:<x)wk(x> dx. 2
Although orthogonal to the ¢, by construction, the
#,, are not mutually orthogonal. In fact, they are not
even linearly independent.® As a result, the set of all
¢, plus all ¢, is overcomplete.” The geometrical
reason is clear: There are as many &, as there are y,,
and when we add the ¢, we obtain a set with “b too

many”’ functions, where b is the number of bound
states ¢,. The apparent reason that this has not caused
difficulties in applications to the band theory of solids
is that if the set {¢,} is truncated, as in approximating
an infinite secular determinant by a finite one, then
the resulting finite set of {¢,} and {#,} is no longer
overcomplete, but undercomplete. Nevertheless, the
secular determinant will necessarily become more and
more “ill-conditioned” as the size of the basis is
increased beyond some optimal size. Furthermore,
there are serious difficulties of principle in attempting
to use the set of all ¢, plus all ¢, as a basis in many-
body calculations.

3. CONSTRUCTION OF COPW’S FOR
THE CASE OF ONE BOUND STATE

Suppose there is only one ¢,; call it ¢,. The set
consisting of ¢, plus all OPW’s ¢, is overcomplete
because it has “one too many’” members. This suggests
that it might be possible to construct a complete
orthonormal set by “leaving out™ one function. In
applications there will usually be one of the plane
waves ., say t,, which “most resembles” ¢,. This
suggests that we try to construct modified OPW’s in
which the overcompleteness and nonorthogonality
problem is removed by leaving out the member
corresponding to & = 0. We shall show that this can
be done provided only that y, is not identical with ¢,:

(b]0) = f BE()px) dx 5 1. 3)
Define
fo(x) = ¢b(x)a
Flx) = p(x) — ¢ ld(x) — wo(x)], k%0, (4)

where ¢, remains to be determined. The condition
(fo,fk)=0, k¢09 (5)
uniquely determines c;:

e =G|kl — G| ®)
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Then it is easily verified that the f; are orthonormal:
(firfe) = (B> i) — ci(b | K)* — e(b | k)
+ ¢fe 2 — (b |0) — (b ]0)*]
= ("plw Wk’) = 61{1{” k # 0’ k, # O (7)
Finally, one can verify that the set {f;} is complete,

Z SR = Zp()w(x) = 6(x — x'), (8)
with the aid of the relations

PP e L0
B = b or )
ey = B0 = (0] 0 ) (
i Pl X) = 1——(b[0)*

which follow from (6) and completeness of the set
{y,}; the primes on the summations (9) imply omission
of k =0.

The expressions (4) and (6) for the COPW’s can be
written in a more compact form by defining

¢>llz(x) = "l’o(x) - ¢b(x):
are f (BT () dx = By — (b ] K. (10)
Then
o wlR
) = 99 = G .
both for k& £ 0 and for k. = 0.

(1

4, EXAMPLE

We shall present here a simple example which
brings out the physical reasoning behind the mathe-
matical ansatz (4). Suppose x stands for the position
vector x of a single spinless particle, take the indices
k to be wave vectors k, and choose the y,_to be
normalized plane waves with periodicity volume :

p(x) = Q7R (12)
Define y,(x) and #,(k) by
$i(x) = Q7hy,(x),
) = f K()e ™ Td"x. (13)
Then the COPW’s (11) are
A =i - f%; ww] 04

Suppose ¢y(x) differs from ypo(x) = Q% only by
having a “hole cut out” in the neighborhood of the
origin.® Then y,(x) will be unity in the neighborhood
of the origin, falling to zero for x. larger than the
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radius of the hole. It is then clear from (14) that not
only f;, but all f, of sufficiently low k, will have the
same hole cut out of them. The functions f, are thus
well suited to the physics of the suggested applica-
tion®; they correctly represent the physical fact that
He* atoms of low energy do not penetrate the “bubble”
blown by the electron. This application was the
origin of the ansatz (4).

5. CONSTRUCTION OF COPW’S FOR THE
CASE OF MANY BOUND STATES

Return now to the case of many bound states ¢,,
originally considered in Sec. 2. In many applications
it is possible to pick out a subset of the *“‘plane waves”
1, such that each member of this subset resembles, in
certain respects, one of the ¢,. In this way, one sets up
a 1-to-1 correspondence ¢, <> y;, between the bound
states ¢, and certain of the plane waves. This suggests
the following generalization of (4):

Td%) = (%),

) = ) = Zetalbi(0) = pre(®)], (1)
k #any k,.
The conditions
(.fa’fk) = 0, k # any kB (16)
lead to the equations
T oM ycp = (2| k) (17)
for the determination of the ¢, ,, where
Maﬁ = 0‘1‘3 - (0( l kﬂ)‘ (18)

The inhomogeneous equations (17) have a unique
solution for the ¢, ; provided only that the determinant
of the matrix (M,;) does not vanish.” It is readily
verified that the ¢, satisfying (17) also lead to
orthonormal COPW'’s:

(fksflc’) = 6kk’1 kand k' # any ka'
The completeness relation

Z L0 2 (x) + Zpfi)f(x)
= 0, (0 (x) + Spp(x)pr(x)
= 8(x — x'), (20)

where the prime on X}, implies omission of all k,, can
be verified by tedious algebraic reductions based on
the identities

(19)

Core = Zﬁ(M_l)aﬂ(lg l k),
B | B*px) = B5(x) — (B | k) i, (x),
i | XB | k¥ = 6, — Zy(a| kXB] k)*,
ZUM (B k) = (M) — 6,y
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which follow from (17), (18), and completeness of the
set {y}.

More explicit expressions for the COPW’s can be
derived in the special case that the symmetry of the
¢, and v, is such that

(0| ky) =0, o8 (22)
Then it follows trivially from (17) and (18) that
o = (| KYIL = (| k)1 (23)

As in Sec. 3, it is convenient to define
¢;(X) = wlca(x) - ¢a(x),
@ 1) = [ I8 00 dx = 0, = | 0. 29

Then (15) can be written
(@ | k)

fil(x) = plx) — &, @ |k

$a(x) (25)
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for all k, provided that we define
Jel¥) = fulx) = ().
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The basis-independent approach to canonical commutation relations (CCR’s), which allows arbitrary
test-function spaces for smearing the field operators, is a generalization of the basis-dependent approach,
in which the fields are smeared with an orthonormal system (or finite linear combinations thereof) to
obtain an infinite set of ¢, and p,.. Using recent results on continuity properties of representations of the
CCR’s, we show that every representation of the basis-independent type in a separable Hilbert space can
be obtained by continuous extension of a suitable representation of the basis-dependent type where prop-
erties like irreducibility, cyclicity, etc., remain unaffected. In this sense, both approaches are equivalent,
and the classification problem for CCR’s is reduced from the simultaneous consideration of all representa-
tions for all possible test-function spaces to those for a single one (up to isomorphism).

1. INTRODUCTION

There exist two different approaches to the canonical
commutation relations for infinitely many degrees of
freedom or fields (equal-time commutation relations).
The first one, as investigated by Garding and Wight-
man,* starts from infinitely many ¢, and p, with the
usual commutation relations. The second one, as
formulated by Segal® and studied by Araki® and Lew,?
starts from smeared field operators ®(f) and II(g)
where f and g are elements of some real test-function
or some general real linear spaces U, and Uy,

respectively. One has a nondegenerate bilinear form
(f, g). Heuristically,

O(f) = f D(x, o) f(x)dx

and similarly for II(g), so that in view of

[@(x), I(x)] = 0¥ (x — y)
one demands

[@(), ()] = i(f. &)

In this second “basis-independent” approach one
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can, in principle, consider all possible test-function
spaces Ug and Uy . In this respect, it is a generaliza-
tion of the first approach which is obtained by choos-
ing the particular test-function space Ugq = Uy =
U, , where U, consists of all finite linear combinations
of some orthonormal system Ay, Ay, * - - ; U, can be
identified with the space of all finite sequences (a,, " -+,
ay, 0, - - -) of real numbers. One can define ¢, = O(#;)
and p, = II(#,). This will be called the basis depend-
ent (or Garding-Wightman) approach.

The choice of specific test-function spaces, up to
now, had to be justified by physical arguments. If U,
and Uy were chosen too large, e.g., equal to the space
L2 of all square-integrable functions, one might lose
some physically significant representations of the
CCR’s with a smaller test-function space, for, by
restricting representations for L? to a subspace
U < L?, one need not obtain all representations for U.
On the other hand, if the test-function spaces were
chosen too small, this might destroy properties of the
representation such as cyclicity, irreducibility, or
what not; and in quantum field theory these properties
have a direct physical significance (cf., e.g., Araki’s
results for the Hamiltonian?®).

The purpose of this paper is to show that, without
losing any of such properties, one can restrict oneself
to VU,. It will turn out that every representation of
the basis-independent approach (for any choice of
Ve and Up) in a separable Hilbert space can be
obtained from a suitable Garding-Wightman repre-
sentation by extending the latter in the natural metric
introduced by Hegerfeldt and Klauder® and identi-
fying isomorphic test-function spaces. This reduces
the problem of classifying all representations of the
CCR’s for all possible test-function spaces to the
study of representations of the Gérding-Wightman
type. ‘

It is customary to define a representation of the
CCR’s to be a family of unitary operators U(f) and
V(g) with fe VU, and g e Uy satisfying the Weyl
relations

U(f1 +f2) = U(fl)U(f2)a
Vg, + g2 = V(gdV(ga),
V(@)U(f) = exp [i(f, 9IU(fHV ()

One assumes ray continuity, i.e., weak continuity of
U(Af) and V(Ag) in 4 for fixed f and g. The relation-
ship to the fields is given by U(f) = ¢®?) and
V(g) = ¢ through Stone’s theorem. This Weyl
form avoids domain questions. Taking Vg = Uy =
U, one obtains the basis-dependent approach in the
Weyl form.

GERHARD C. HEGERFELDT

Any representation of the CCR’s is a direct sum of
cyclic representations. A cyclic representation of the
basis-dependent approach, ie., with Uy = Uy =
U, belongs necessarily to a separable Hilbert space,
so that in this case nonseparable Hilbert spaces can
enter only through uncountable direct sums. In the
basis-independent approach this need not be s0.% It is
clear, therefore, that the above-mentioned separability
condition is necessary.

A precise formulation of the main result is given in
Sec. 4. Its proof is based on properties of the metric d
which are of independent interest. They are derived in
Secs. 2 and 3. Section 5 contains a discussion of the
results and of its connection with Garding domains
and analytic vectors.

2. CONVERGENCE IN METRIC 4 IS CON-
VERGENCE IN MEASURE

In Ref. 5 it has been shown that each representation
of the CCR’s which is cyclic or a countable direct sum
of cyclic representations induces a natural metric dy;
on Uy and dy- on Uy. The metric can be written as

dotf =17 = |z {Wa = 1) -
f,f eVy, (2.1)

and similarly 4, for Uy, where ¢, is either a cyclic
vector or a vector whose components with respect to
the direct sum of cyclic subspaces are cyclic in each
subspace. The metric defines the weakest vector topol-
ogy on U, and Uy, for which the maps f— U(f) and
g - V(g) are strongly continuous. Furthermore, the
representation can be extended by continuity to the
completion of Vg and Uy in dy; and dp,, respectively.
In the following, we mostly suppress the indices U and
¥ and talk about the metric d.

In Ref. 7 a direct integral form of representations of
the CCR’s has been obtained which is, in particular,
valid for a separable Hilbert space JX. Accordingly,
one can write '

®
s = [ KD dut), @)
Ve
where Uy, is the algebraic dual of Uy, F &€ Uy, and
where u is a finite “Ug-quasi-invariant measure (on the
Borel sets of U, the o-algebra generated by the
weakly open cylinder sets in VUg). The action of U(f)
is given by
U(N)e)E) = "D p(F).

The form of ¥(g) in this direct integral realization is
not of interest here. Now the following connection
between d and u will be established.

(2.3)
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Theorem 2.1: Assume f, € Ug. Then d(f,) — 0 if
and only if (f,, F) — 0 in g-measure.

Proof: Let ¢, correspond to the vector function
¢o(F). According to the remark following Corollary
5.4 in Ref. 5, one can assume || @y(F)|| = 1. Inserting
Eq. (2.3) into (2.1), one obtains

VK

at = [ aet [ e = g,
@

d(f)E = 2J.dle_‘2J.d/¢(F){1 — cos [A(f, F)]}. (2.4)

Using the properties of such measures, as, for instance,
explained in Ref. 8, one can show that cos [A(f, F)]is
measurable on-R; X Uy . Therefore, since the inte-
grand is positive, one can interchange the order of
integration. Thus one obtains

d(f)? = 2 f QP — e (25)

Now, for d(f,,)* — 0, it is necessary that the integrand
go to zero in measure. Thus exp [—1(f,, F)*] has to
go to one in measure. But then (f,,, F) goes to zero in
measure. Conversely, if this is the case, then the inte-
grand goes to zero in measure. Since the integrand is
bounded and since the measure is finite, the integral
tends to zero, by Lebesgue’s bounded convergence.

QED

Interchanging the role of U(f) and V(g), one ob-
tains a finite measure i on ‘U and a result analogous
to Theorem 2.1.

Each f e Uy defines a measurable function on Uy,
by f(F) = (f, F). As for any finite measure space, the
set of all (equivalence classes of all) u-measurable
functions on Uy becomes a metrizable linear topo-
logical space if endowed with the topology of conver-

gence in measure. Ug, can be regarded as a subspace. .

Theorem 2.1 states that U, with its metric d is homeo-
morphic to this subspace.

3. THE METRIC SPACES Ugo AND Uy ARE
SEPARABLE

In this section the following result will be proved:

Theorem 3.1: Let U(f), V(g), f€ Uy and ge Uy
be a representation of the CCR’s in a separable
Hilbert space . Then U, and Uy are separable in
the metric d.

Proof: By Theorem 1 of Ref. 7, one can regard the
space L2 of all p-square-integrable functions as a
subspace of J. This can also be seen directly from the
integral decomposition (2.2), if one represents JE(F)
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as a sequence space of dimension n(F). Then L2 is
isometric to the space of all vector functions y(F) €
Je(F) with all components, except possibly the first,
vanishing. Thus L2 < X is separable.

This implies that the measure ring of all measurable
sets in Uy, modulo u-null sets is separable.® Let E,,
E,, - be a dense set in the measure ring, let E; be a
representative for £;, and let % 1., (F) be the character-
istic function of E,, i = 1,2, --. For the metric on
the ring, one has

P(E:, E)) = u{F:1yp(F) = 11,(F) > O}

Now let f(F) be a measurable function. Then there
exists a sequence of simple functions s,(F) which con-
verges to f(F) everywhere. Hence, s, — f in measure.
The simple functions s, have the form

N(v)
(P =3 )

where the y! are characteristic functions of measur-
able sets. Hence, for each y!¥, there is a particular
Ej, ) of the above {E,} such that

PAF 2y (F) — 2(F) > 0} < ¢2N()r,,

where € is any positive number and where r, is the
maximum over « of rational numbers r{* which are so
chosen that
le” — 13" < e/2N().
We put
Niv)
§(F) = 2 1 an(F). 3.1
o
Both s, and § are in L', and by the triangle inequality
lls, — $ll, < . Hence for each v there is a sequence
§, ., of the same form as in Eq. (3.1) converging to s, in
L', But this implies §, , — 5, in measure. Let p be the
metric for convergence in measure. One can choose a
function §, from {§,,} such that p(s, — §,)) < 27.
Then

p(f— §v) S p(f— Sv) + p(sv - S;v) ~ 0.

Since the set of functions of the form of Eq. (3.1) is
countable, the space of measurable function with the
topology of convergence in measure is separable. Now,
every subset of a separable metric space is also separ-
able. Hence, by Theorem 2.1, U, with its metric d is
separable.

Interchanging the role of U(f) and V'(g), one obtains
the same result for Uy, . QED

Although it is not needed for the following, we note
in passing that the converse of Theorem 3.1 also holds.
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Corollary 3.1: Let U(f), V(g) be a representation of
the CCR’s which decomposes into a countable direct
sum of cyclic representations. Let both U, and Vg
with their respective metric d be separable. Then the
representation space JC is separable.’

Proof: Consider a cyclic subspace ¥; < JC with
cyclic vector ¢,. The set of linear combinations with
rational coefficients of vectors of the form U(f)V(g)g,
is dense in JC;. Now let {f;, i=1,2,---} and {g;,
j=1,2,-+} be dense sets in Uy and Uy for d.
Foreach fe Uy and g € Uy, given € > 0, there is an
Ji and a g; such that

KU = UV (@9l
V(@) — Vgl ool < de.

KUV (g) — U(f)V(gdipl < e

Therefore, the set of linear combinations with rational
coefficients of all U(f;)V(g;)¢, is dense in J,. Thus
J€, is separablc. As a countable direct sum of such
subspaces, I is also separable. QED

and

Hence

4. THERE ARE ENOUGH REPRESENTATIONS
OF THE BASIS-DEPENDENT APPROACH

The result announced in the introduction is now an
immediate consequence of the following theorem,
whose significance will be discussed further below.

Theorem 4.1: Let U(f), V(g), with fe Uy and
g €Uy, be a representation of the CCR’s in a
separable Hilbert space, and let d; and d) be the
associated metrics on Uy and Uy, . Then there are
elements /;, hy, - -+ in Vg and Ay, h,, -+ in Uy
such that:

@) (h;, hy) = 0, forall i, k.
(i1) Ve =L{hy, hy, -}

and
Uh = L{h{, by, -},

the finite linear spans of the 4y, h,, - - ~and g, by, - - -,
are dense in the metric spaces Uy and Uy, respec-
tively. If Uy = Uy = U, one can choose &, = 4,
such that VY, = VY is dense in U for the metric
dy + dp.

Proof: By Theorem 3.1, there exists a sequence of
elements in Uq which is dense in Ug(dy,). We omit all
elements which are linearly dependent on preceding
ones. We call the resulting sequence {f;, f;, - - -}, and
denote by UY, the set of all finite linear combinations
of the f;. Then VY, is dense in Ug(dy,). We define {g;,
gz, - - '} and UY in the same way for Uy.
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Assume fe UY, and (f, g) = 0 for each g € VY.
Then f = 0, since for any element § € Uy there is a
sequence {£,} such that §, € UY and g, — g(d). But
then, by Theorem 1.5of Ref. 5, (f, §) = lim (f, §,) =
0. Similarly g = 0 if (f, g) = 0 for all f€ UY,. Hence
the bilinear form (f, g) remains nondegenerate when
restricted to VY and VY.

1t follows that, for fixed i, (f;, g,) cannot vanish for
all ». With this observation one can construct {#;} and
{h} by a three-step induction, a generalization of the
Schmidt orthogonalization procedure.

We put ;= f; and let g, be the first g; such that
@ = (f1,8,) # 0. We put h; = a_'g, . Assume that
h;, g, > and h;,i=1,n — 1,have been defined in such
a way that

L{hy,v=1,-,i}=L{f,,v=1,-,i},
Q{h:,,v::1,"',1'}=£{gkv,v=:],---,f},
(hi! gki)¢0’ (hi: ga)=0
for a<k;, i=1,-"-,n-—1.
Now we define
n-1
hnzfn_gl(fnah;)hi'
Then h, %0, (h,h)=0, and C{h, -, h}=

L{fi, -+ -, fu). Let g, be the first member of {g,, - - -}
which satisfies a, = (4,, g, ) # 0.1 Define

n—1
i = g, = 3 O, )i
Then (h,, k) = 1, (h,, ) = 0 for i < n, and
Sl ) = gl gl

Obviously, the finite linear span of the A, is VY.
Furthermore, each g; appears as a g; , for some n; for,
otherwise, (A,,g;,) =0 for all #» and thus g, = 0.
Since g, € L{hy, -+, h,}, it follows that Uy =
Lhy, by, - -3 If Vg = Uy = VU, then VU is separ-
able for the metric dy; + dp, and one simply has to
orthogonalize a dense sequence. QED

The denseness of VY in Vg and VY in VU, with
respect to the metrics dyy and dj,, respectively, means
that every element fe Uy is a limit of a sequence
in VY, f,, — f(d), where at the same time, by Ref. 5,
U(4f,) — U(Af) strongly for every'? A; similarly for
Uy . Thus it suffices to know the operators U(f) and
V(g) only for f€ UY and g € VY since then the whole
representation is determined. That is, one can confine
oneself to the subrepresentation U(f), V(g), with
feVUY and ge Uy . Since the metrics df and dY
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induced by this representation on UY, and VY, coincide
with the restriction of d to VY and VY , it suffices to
extend the representation U(f), V(g), with fe UY
and g € U}, in the metrics 49 and 4. To obtain all
of Uy and Uy, it may, in general, not be necessary
to go to the completion of UY, and VY, since VU, and
U, are, in general, not complete in d.

Now, if one puts U(Ah,) = e'*% and V(2h;) = €i*?x,
one just obtains a basis-dependent representation;
any U(f), f€ UY, is a finite product of some U(4, /1)
and similarly for ge VY. If one isomorphically
identifies &, <> A4 then VY = VY. In this case, one
has to bear in mind that in general the metrics dy; and
dy are different so that, to obtain Uy and Uy, one
has to extend U, = UY = Uy by 4% and 49,
respectively.

This shows that the basis-dependent approach
provides enough representations to obtain any repre-
sentation of the basis-independent approach by a
continuous extension of a suitably chosen basis-de-
pendent Garding-Wightman representation. This is
summarized in the next corollary, a reformulation of
Theorem 4.1 and the main result of this paper.

Corollary 4.1 (Sufficiency of Basis-Dependent
Approach): For every representation of the basis-inde-
pendentapproach, U(f), V(g), with f e Ugandge VY,
in a separable Hilbert space J, there is a representa-
tion of the basis-dependent approach, Up(fy), Vo(go),
with fy, go€ Uy = L{hy, by, -}, (B, By) = 0y, in
¥, with the following properties: (i) U, can be
embedded in Uy, and VU in such a way that U(f) =
U(fo) if f= fo and V(g) = V(go) if g <> go; (ii) Uy
can be embedded in the completion of U, with respect
to the metric dy; , and Uy can be embedded in the
completion of U, with respect to the metric dy, , i.e.,
every fe Uy can be identified with dj -Cauchy
sequence in VU,; (iii) if f, € Uy, fe Uy, and f, —
Sf(dy), then Uy(2f,) — U(Af) strongly for each 4;
if g, € VU,, g € Up, and g, — g(dy ), then V,(4g,) —
V(4g) strongly for each 1.13

5. DISCUSSION: ANALYTIC VECTORS AND
GARDING DOMAINS

Let us discuss the above result for the physically
important case of equal test-functions spaces for both
fields, Uy = Uy = U. One has to determine all
representations of the CCR’s in separable Hilbert
spaces for all U. Consider, first, Girding—Wightman
representations, i.e., for the space Uy of all finite
linear combinations of an orthonormal basis. Each
such representation, D say, determines a metric

dy, + dVo on Uy, and D is strongly continuous in
this metric. Denote by UYL the completion of UV, in
this metric. Then D can be extended to a represen-
tation D for the larger space UP by continuity.*
Let U, = VU, = UL and let the bilinear form (f, g)
be nondegenerate on VU;. We denote by Dqy the
restriction to D to ;. Then the basic result of this
paper is that all Dq;, obtained in this way (for
all possible D) give a complete solution for the above
“basis-independent” approach for all U (with a suit-
able identification of test-function spaces). Of course,
the proof in Sec. 4 goes just the other way around.

For general test-function spaces U, and Uy, the
situation is similar. U is the smallest space one can
start with since finite linear combinations are always
allowed. The completions of VU, in dy;, and dy, yield
the largest possible test-function spaces,* and their
subspaces yield all Ug and Uy . This carries the idea®
that “‘every representation determines its own test-
function space” to its final conclusion.

As an immediate application, we note a consider-
able simplification in the realization of the CCR’s by
means of a measure.*” The above theorem implies that
any representation of the CCR’s in a separable Hilbert
space can be realized as a direct integral by means of a
measure on Uy, the space of all infinite sequences
of real numbers. The measure is quasi-invariant not
only for U, = U, but also for Uy embedded in
U, . This means that the in general extremely large
space Uy can be replaced by the much smaller
space U, .

It may be worthwhile to point out that the above
orthonormal bases have little to do with L? conver-
gence of test functions. This is most easily seen from
the following example, which at first sight seems to be
paradoxical and inconsistent with the above results.
Consider a representation of the CCR’s characterized
by the expectation functional

E(fg) = exp {~1(/.f) + (& &) + F©) + O,
70 = f foydx, §0) = f gWdx, 61

which is well defined for any fand g € L? N L1, It was
noted by Araki (cf. the remark in Ref. 15) that this
representation coincides with the Fock representation
when f and g is restricted to the subspace {fe L* N
L1, f(0) = 0}. Therefore, if one chooses an ortho-
normal basis {k,} where %,(0) = 0 for each n, then
U, = L{hy, hy, - - -} is norm dense in L2 N L1, and
the extension of the representation yields the Fock
representation, not the original one.

The solution to this apparent paradox is quite
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simple. The natural metric is, in this case,

dy(f)? = 2m¥(1 = [1 + (£, NI
x exp {~fOH[1 + (L NN (5.2)

and the same expression for d)(g). Omitting the term
with {f(0)}2, one obtains the metric for the Fock
representation. It is evident that the above subspace
U, is not dense in L? v L* with respect to the metric
dy since convergence in dy; means that both (f, — f,
f. —f) and {f,(0) — f(0)} converge to zero. Hence,
in the metric dy;, one can never approximate a func-
tion f with f0) %0 by functions from V.

The above results have an immediate application to
the question of analytic vectors and Garding domains.
In a recent paper Reed!® has shown that the gener-
ators g, and p,, k = 1,2,-- -, of a basis-dependent
representation possess a common dense set of analytic
vectors as a common invariant dense Garding domain,
on which they are essentially self-adjoint. Certain in-
finite linear combinations of g, and of the p, can also be
defined on this domain; they leave it invariant and are
essentially self-adjoint on it. Hence one has, by
Theorem 4.1, the following.

Corollary 5.1: Let U(f), V(g), with fe Ug and
g € Uy, be a representation in a separable Hilbert

space J€. Then there are subspaces ‘i)o of Uy and
‘fln of Uy, dense in the natural metric and a
domain D, dense in X, such that all generators ©(f),
fe ‘IA),,,, and [I(g), g e ‘1A7n ,aredefined and essentially
self-adjoint on D, leave D invariant, and possess each
v € D as an analytic vector.

GERHARD C. HEGERFELDT

One obviously has, with the U9, and UY; of Theorem
4.1, the inclusions VY < Uy = VU, and VY <
Up < VUpg. It would be interesting if one could show

that one can always choose ‘qu, = U, and ‘fiTn =
Uy .
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